Deformed dimensional reduction
Geometry & topology, Tome 26 (2022) no. 2, pp. 721-776.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Since its first use by Behrend, Bryan, and Szendrői in the computation of motivic Donaldson–Thomas (DT) invariants of 𝔸3, dimensional reduction has proved to be a crucial tool in motivic and cohomological DT theory. Inspired by a conjecture of Cazzaniga, Morrison, Pym and Szendrői on motivic DT invariants, work of Dobrovolska, Ginzburg and Travkin on exponential sums, and work of Orlov and Hirano on equivalences of categories of singularities, we generalize the dimensional reduction theorem in motivic and cohomological DT theory and use it to prove versions of the Cazzaniga–Morrison–Pym–Szendrői conjecture in these settings.

DOI : 10.2140/gt.2022.26.721
Keywords: Donaldson–Thomas invariants, quivers with potential

Davison, Ben 1 ; Pădurariu, Tudor 2

1 School of Mathematics, University of Edinburgh, Edinburgh, United Kingdom
2 Department of Mathematics, Columbia University, New York, NY, United States
@article{GT_2022_26_2_a3,
     author = {Davison, Ben and P\u{a}durariu, Tudor},
     title = {Deformed dimensional reduction},
     journal = {Geometry & topology},
     pages = {721--776},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2022},
     doi = {10.2140/gt.2022.26.721},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.721/}
}
TY  - JOUR
AU  - Davison, Ben
AU  - Pădurariu, Tudor
TI  - Deformed dimensional reduction
JO  - Geometry & topology
PY  - 2022
SP  - 721
EP  - 776
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.721/
DO  - 10.2140/gt.2022.26.721
ID  - GT_2022_26_2_a3
ER  - 
%0 Journal Article
%A Davison, Ben
%A Pădurariu, Tudor
%T Deformed dimensional reduction
%J Geometry & topology
%D 2022
%P 721-776
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.721/
%R 10.2140/gt.2022.26.721
%F GT_2022_26_2_a3
Davison, Ben; Pădurariu, Tudor. Deformed dimensional reduction. Geometry & topology, Tome 26 (2022) no. 2, pp. 721-776. doi : 10.2140/gt.2022.26.721. http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.721/

[1] K Behrend, J Bryan, B Szendrői, Motivic degree zero Donaldson–Thomas invariants, Invent. Math. 192 (2013) 111 | DOI

[2] A A Beĭlinson, J Bernstein, P Deligne, Faisceaux pervers, from: "Analysis and topology on singular spaces, I", Astérisque 100, Soc. Math. France (1982) 5

[3] A Cazzaniga, A Morrison, B Pym, B Szendrői, Motivic Donaldson–Thomas invariants of some quantized threefolds, J. Noncommut. Geom. 11 (2017) 1115 | DOI

[4] B Davison, The integrality conjecture and the cohomology of preprojective stacks, preprint (2016)

[5] B Davison, The critical CoHA of a quiver with potential, Q. J. Math. 68 (2017) 635 | DOI

[6] B Davison, Refined invariants of finite-dimensional Jacobi algebras, preprint (2019)

[7] B Davison, D Maulik, J Schürmann, B Szendrői, Purity for graded potentials and quantum cluster positivity, Compos. Math. 151 (2015) 1913 | DOI

[8] B Davison, S Meinhardt, Donaldson–Thomas theory for categories of homological dimension one with potential, preprint (2015)

[9] B Davison, S Meinhardt, Motivic Donaldson–Thomas invariants for the one-loop quiver with potential, Geom. Topol. 19 (2015) 2535 | DOI

[10] B Davison, S Meinhardt, Cohomological Donaldson–Thomas theory of a quiver with potential and quantum enveloping algebras, Invent. Math. 221 (2020) 777 | DOI

[11] B Davison, A T Ricolfi, The local motivic DT/PT correspondence, J. Lond. Math. Soc. 104 (2021) 1384 | DOI

[12] J Denef, F Loeser, Motivic exponential integrals and a motivic Thom–Sebastiani theorem, Duke Math. J. 99 (1999) 285 | DOI

[13] J Denef, F Loeser, Geometry on arc spaces of algebraic varieties, from: "European Congress of Mathematics, I" (editors C Casacuberta, R M Miró-Roig, J Verdera, S Xambó-Descamps), Progr. Math. 201, Birkhäuser (2001) 327

[14] G Dobrovolska, V Ginzburg, R Travkin, Moduli spaces, indecomposable objects and potentials over a finite field, preprint (2016)

[15] A I Efimov, Cyclic homology of categories of matrix factorizations, Int. Math. Res. Not. 2018 (2018) 3834 | DOI

[16] T Ekedahl, The Grothendieck group of algebraic stacks, preprint (2009)

[17] S M Gusein-Zade, I Luengo, A Melle-Hernández, A power structure over the Grothendieck ring of varieties, Math. Res. Lett. 11 (2004) 49 | DOI

[18] T Hausel, E Letellier, F Rodriguez-Villegas, Positivity for Kac polynomials and DT–invariants of quivers, Ann. of Math. 177 (2013) 1147 | DOI

[19] Y Hirano, Derived Knörrer periodicity and Orlov’s theorem for gauged Landau–Ginzburg models, Compos. Math. 153 (2017) 973 | DOI

[20] M U Isik, Equivalence of the derived category of a variety with a singularity category, Int. Math. Res. Not. 2013 (2013) 2787 | DOI

[21] B Keller, Deformed Calabi–Yau completions, J. Reine Angew. Math. 654 (2011) 125 | DOI

[22] M Kontsevich, Y Soibelman, Stability structures, motivic Donaldson–Thomas invariants and cluster transformations, preprint (2008)

[23] M Kontsevich, Y Soibelman, Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson–Thomas invariants, Commun. Number Theory Phys. 5 (2011) 231 | DOI

[24] L Le Bruyn, Brauer–Severi motives and Donaldson–Thomas invariants of quantized threefolds, J. Noncommut. Geom. 12 (2018) 671 | DOI

[25] Q T Lê, Proofs of the integral identity conjecture over algebraically closed fields, Duke Math. J. 164 (2015) 157 | DOI

[26] L Maxim, M Saito, J Schürmann, Symmetric products of mixed Hodge modules, J. Math. Pures Appl. 96 (2011) 462 | DOI

[27] S Meinhardt, M Reineke, Donaldson–Thomas invariants versus intersection cohomology of quiver moduli, J. Reine Angew. Math. 754 (2019) 143 | DOI

[28] J Nicaise, S Payne, A tropical motivic Fubini theorem with applications to Donaldson–Thomas theory, Duke Math. J. 168 (2019) 1843 | DOI

[29] M V Nori

[30] D O Orlov, Triangulated categories of singularities, and equivalences between Landau–Ginzburg models, Mat. Sb. 197 (2006) 117 | DOI

[31] T Pădurariu, K–theoretic Hall algebras for quivers with potential, preprint (2019)

[32] M Reineke, Cohomology of noncommutative Hilbert schemes, Algebr. Represent. Theory 8 (2005) 541 | DOI

[33] M Saito, Modules de Hodge polarisables, Publ. Res. Inst. Math. Sci. 24 (1988) 849 | DOI

[34] M Saito, Introduction to mixed Hodge modules, from: "Actes du Colloque de Théorie de Hodge", Astérisque 179–180, Soc. Math. France (1989) 10, 145

[35] M Saito, Mixed Hodge modules and admissible variations, C. R. Acad. Sci. Paris Sér. I Math. 309 (1989) 351

Cité par Sources :