Surface group representations in SL2(ℂ) with finite mapping class orbits
Geometry & topology, Tome 26 (2022) no. 2, pp. 679-719.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Given an oriented surface of positive genus with finitely many punctures, we classify the finite orbits of the mapping class group action on the moduli space of semisimple complex special linear two dimensional representations of the fundamental group of the surface. For surfaces of genus at least two, such orbits correspond to homomorphisms with finite image. For genus one, they correspond to the finite or special dihedral representations. We also obtain an analogous result for bounded orbits in the moduli space.

DOI : 10.2140/gt.2022.26.679
Keywords: character variety, surface group, mapping class group

Biswas, Indranil 1 ; Gupta, Subhojoy 2 ; Mj, Mahan 1 ; Whang, Junho Peter 3

1 School of Mathematics, Tata Institute of Fundamental Research, Mumbai, India
2 Department of Mathematics, Indian Institute of Science, Bangalore, India
3 Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, United States
@article{GT_2022_26_2_a2,
     author = {Biswas, Indranil and Gupta, Subhojoy and Mj, Mahan and Whang, Junho Peter},
     title = {Surface group representations in {SL2(\ensuremath{\mathbb{C}})} with finite mapping class orbits},
     journal = {Geometry & topology},
     pages = {679--719},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2022},
     doi = {10.2140/gt.2022.26.679},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.679/}
}
TY  - JOUR
AU  - Biswas, Indranil
AU  - Gupta, Subhojoy
AU  - Mj, Mahan
AU  - Whang, Junho Peter
TI  - Surface group representations in SL2(ℂ) with finite mapping class orbits
JO  - Geometry & topology
PY  - 2022
SP  - 679
EP  - 719
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.679/
DO  - 10.2140/gt.2022.26.679
ID  - GT_2022_26_2_a2
ER  - 
%0 Journal Article
%A Biswas, Indranil
%A Gupta, Subhojoy
%A Mj, Mahan
%A Whang, Junho Peter
%T Surface group representations in SL2(ℂ) with finite mapping class orbits
%J Geometry & topology
%D 2022
%P 679-719
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.679/
%R 10.2140/gt.2022.26.679
%F GT_2022_26_2_a2
Biswas, Indranil; Gupta, Subhojoy; Mj, Mahan; Whang, Junho Peter. Surface group representations in SL2(ℂ) with finite mapping class orbits. Geometry & topology, Tome 26 (2022) no. 2, pp. 679-719. doi : 10.2140/gt.2022.26.679. http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.679/

[1] I Biswas, T Koberda, M Mj, R Santharoubane, Representations of surface groups with finite mapping class group orbits, New York J. Math. 24 (2018) 241

[2] P Boalch, The fifty-two icosahedral solutions to Painlevé VI, J. Reine Angew. Math. 596 (2006) 183 | DOI

[3] J Bourgain, A Gamburd, P Sarnak, Markoff triples and strong approximation, C. R. Math. Acad. Sci. Paris 354 (2016) 131 | DOI

[4] S Cantat, F Loray, Dynamics on character varieties and Malgrange irreducibility of Painlevé VI equation, Ann. Inst. Fourier (Grenoble) 59 (2009) 2927 | DOI

[5] D Cooper, J F Manning, Nonfaithful representations of surface groups into SL(2, C) which kill no simple closed curve, Geom. Dedicata 177 (2015) 165 | DOI

[6] G Cousin, Algebraic isomonodromic deformations of logarithmic connections on the Riemann sphere and finite braid group orbits on character varieties, Math. Ann. 367 (2017) 965 | DOI

[7] G Cousin, V Heu, Algebraic isomonodromic deformations and the mapping class group, J. Inst. Math. Jussieu 20 (2021) 1497 | DOI

[8] S K Donaldson, Twisted harmonic maps and the self-duality equations, Proc. Lond. Math. Soc. 55 (1987) 127 | DOI

[9] B Dubrovin, M Mazzocco, Monodromy of certain Painlevé-VI transcendents and reflection groups, Invent. Math. 141 (2000) 55 | DOI

[10] R Fuchs, Über lineare homogene Differentialgleichungen zweiter Ordnung mit drei im Endlichen gelegenen wesentlich singulären Stellen, Math. Ann. 63 (1907) 301 | DOI

[11] D Gallo, M Kapovich, A Marden, The monodromy groups of Schwarzian equations on closed Riemann surfaces, Ann. of Math. 151 (2000) 625 | DOI

[12] W M Goldman, Trace coordinates on Fricke spaces of some simple hyperbolic surfaces, from: "Handbook of Teichmüller theory, II" (editor A Papadopoulos), IRMA Lect. Math. Theor. Phys. 13, Eur. Math. Soc. (2009) 611 | DOI

[13] N J Hitchin, Poncelet polygons and the Painlevé equations, from: "Geometry and analysis" (editor S S Abhyankar), Tata Inst. Fund. Res. (1995) 151

[14] R D Horowitz, Characters of free groups represented in the two-dimensional special linear group, Comm. Pure Appl. Math. 25 (1972) 635 | DOI

[15] K Iwasaki, A modular group action on cubic surfaces and the monodromy of the Painlevé VI equation, Proc. Japan Acad. Ser. A Math. Sci. 78 (2002) 131

[16] T Koberda, R Santharoubane, Quotients of surface groups and homology of finite covers via quantum representations, Invent. Math. 206 (2016) 269 | DOI

[17] M Laurent, Équations diophantiennes exponentielles, C. R. Acad. Sci. Paris Sér. I Math. 296 (1983) 945 | DOI

[18] O Lisovyy, Y Tykhyy, Algebraic solutions of the sixth Painlevé equation, J. Geom. Phys. 85 (2014) 124 | DOI

[19] J W Morgan, P B Shalen, Valuations, trees, and degenerations of hyperbolic structures, I, Ann. of Math. 120 (1984) 401 | DOI

[20] A Patel, A N Shankar, J P Whang, The rank two p–curvature conjecture on generic curves, Adv. Math. 386 (2021) | DOI

[21] J P Previte, E Z Xia, Topological dynamics on moduli spaces, II, Trans. Amer. Math. Soc. 354 (2002) 2475 | DOI

[22] J H Przytycki, A S Sikora, On skein algebras and Sl2(C)–character varieties, Topology 39 (2000) 115 | DOI

[23] M Van Der Put, M F Singer, Galois theory of linear differential equations, 328, Springer (2003) | DOI

[24] K Saito, Character variety of representations of a finitely generated group in SL2, from: "Topology and Teichmüller spaces" (editors S Kojima, Y Matsumoto, K Saito, M Seppälä), World Sci. (1996) 253

[25] C T Simpson, Moduli of representations of the fundamental group of a smooth projective variety, II, Inst. Hautes Études Sci. Publ. Math. 80 (1994) 5 | DOI

[26] J C Sinz, Some results in representation dynamics, PhD thesis, University of Chicago (2010)

[27] S P Tan, Y L Wong, Y Zhang, End invariants for SL(2, C) characters of the one-holed torus, Amer. J. Math. 130 (2008) 385 | DOI

[28] H Vogt, Sur les invariants fondamentaux des équations différentielles linéaires du second ordre, Ann. Sci. École Norm. Sup. 6 (1889) 3 | DOI

[29] J P Whang, Diophantine analysis on moduli of local systems, PhD thesis, Princeton University (2018)

[30] J P Whang, Global geometry on moduli of local systems for surfaces with boundary, Compos. Math. 156 (2020) 1517 | DOI

[31] J P Whang, Nonlinear descent on moduli of local systems, Israel J. Math. 240 (2020) 935 | DOI

Cité par Sources :