Unramified F–divided objects and the étale fundamental pro-groupoid in positive characteristic
Geometry & topology, Tome 26 (2022) no. 7, pp. 3221-3306.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let 𝒳S be a flat algebraic stack of finite presentation. We define a new étale fundamental pro-groupoid Π1(𝒳S), generalizing Grothendieck’s enlarged étale fundamental group from SGA 3 to the relative situation. When S is of equal positive characteristic p, we prove that Π1(𝒳S) naturally arises as colimit of the system of relative Frobenius morphisms 𝒳 𝒳pS 𝒳p2S in the pro-category of Deligne Mumford stacks. We give an interpretation of this result as an adjunction between Π1 and the stack Fdiv of F–divided objects. In order to obtain these results, we study the existence and properties of relative perfection for algebras in characteristic p.

DOI : 10.2140/gt.2022.26.3221
Keywords: relative Frobenius, $F$–divided object, perfection, coperfection, étale fundamental group, étale affine hull

Huang, Yuliang 1 ; Orecchia, Giulio 2 ; Romagny, Matthieu 3

1 Chengdu Research Institute, Huawei Technology, Chengdu, China
2 École polytechnique fédérale de Lausanne, Lausanne, Switzerland
3 CNRS, IRMAR – UMR 6625, Université de Rennes 1, Rennes, France
@article{GT_2022_26_7_a6,
     author = {Huang, Yuliang and Orecchia, Giulio and Romagny, Matthieu},
     title = {Unramified {F{\textendash}divided} objects and the \'etale fundamental pro-groupoid in positive characteristic},
     journal = {Geometry & topology},
     pages = {3221--3306},
     publisher = {mathdoc},
     volume = {26},
     number = {7},
     year = {2022},
     doi = {10.2140/gt.2022.26.3221},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.3221/}
}
TY  - JOUR
AU  - Huang, Yuliang
AU  - Orecchia, Giulio
AU  - Romagny, Matthieu
TI  - Unramified F–divided objects and the étale fundamental pro-groupoid in positive characteristic
JO  - Geometry & topology
PY  - 2022
SP  - 3221
EP  - 3306
VL  - 26
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.3221/
DO  - 10.2140/gt.2022.26.3221
ID  - GT_2022_26_7_a6
ER  - 
%0 Journal Article
%A Huang, Yuliang
%A Orecchia, Giulio
%A Romagny, Matthieu
%T Unramified F–divided objects and the étale fundamental pro-groupoid in positive characteristic
%J Geometry & topology
%D 2022
%P 3221-3306
%V 26
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.3221/
%R 10.2140/gt.2022.26.3221
%F GT_2022_26_7_a6
Huang, Yuliang; Orecchia, Giulio; Romagny, Matthieu. Unramified F–divided objects and the étale fundamental pro-groupoid in positive characteristic. Geometry & topology, Tome 26 (2022) no. 7, pp. 3221-3306. doi : 10.2140/gt.2022.26.3221. http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.3221/

[1] P Berthelot, A note on Frobenius divided modules in mixed characteristics, Bull. Soc. Math. France 140 (2012) 441 | DOI

[2] N Borne, A Vistoli, The Nori fundamental gerbe of a fibered category, J. Algebraic Geom. 24 (2015) 311 | DOI

[3] H Brenner, The affine class group of a normal scheme, Comm. Algebra 31 (2003) 2849 | DOI

[4] E Descotte, E J Dubuc, A theory of 2–pro-objects, Cah. Topol. Géom. Différ. Catég. 55 (2014) 2

[5] T Dumitrescu, Reducedness, formal smoothness and approximation in characteristic p, Comm. Algebra 23 (1995) 1787 | DOI

[6] H Esnault, V Mehta, Simply connected projective manifolds in characteristic p > 0 have no nontrivial stratified bundles, Invent. Math. 181 (2010) 449 | DOI

[7] D Ferrand, Un adjoint, preprint to Fe20 (2019)

[8] D Ferrand, Enveloppe étale de morphismes plats, Algebra Number Theory 16 (2022) 521 | DOI

[9] D Gieseker, Flat vector bundles and the fundamental group in non-zero characteristics, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 2 (1975) 1

[10] P G Goerss, J F Jardine, Simplicial homotopy theory, 174, Birkhäuser (1999) | DOI

[11] A Grothendieck, Éléments de géométrie algébrique, IV : Étude locale des schémas et des morphismes de schémas, II, Inst. Hautes Études Sci. Publ. Math. 24 (1965) 5

[12] A Grothendieck, Éléments de géométrie algébrique, IV : Étude locale des schémas et des morphismes de schémas, III, Inst. Hautes Études Sci. Publ. Math. 28 (1966) 5

[13] A Grothendieck, Éléments de géométrie algébrique, IV : Étude locale des schémas et des morphismes de schémas, IV, Inst. Hautes Études Sci. Publ. Math. 32 (1967) 5

[14] A Grothendieck, Groupes de type multiplicatif : homomorphismes dans un schéma en groupes, from: "Schémas en groupes, Tome II : Groupes de type multiplicatif, et structure des schémas en groupes généraux (SGA )" (editors M Demazure, A Grothendieck), Lecture Notes in Math. 152, Springer (1970)

[15] A Grothendieck, Foncteurs fibres, supports, étude cohomologique des morphismes finis, from: "Théorie des topos et cohomologie étale des schémas, Tome 2 (SGA )" (editors M Artin, A Grothendieck, J L Verdier), Lecture Notes in Math. 270, Springer (1972)

[16] A Grothendieck, Revêtements étales et groupe fondamental (SGA 1), 3, Soc. Math. France (2003)

[17] A Grothendieck, J L Verdier, Préfaisceaux, from: "Théorie des topos et cohomologie étale des schémas, Tome 1 : Théorie des topos (SGA )" (editors M Artin, A Grothendieck, J L Verdier), Lecture Notes in Math. 269, Springer (1972)

[18] J F Jardine, Simplicial presheaves, J. Pure Appl. Algebra 47 (1987) 35 | DOI

[19] K Kato, Duality theories for the p–primary étale cohomology, I, from: "Algebraic and topological theories" (editors M Nagata, S Araki, A Hattori), Kinokuniya (1986) 127

[20] E Kunz, Characterizations of regular local rings of characteristic p, Amer. J. Math. 91 (1969) 772 | DOI

[21] J P May, Simplicial objects in algebraic topology, 11, Van Nostrand (1967)

[22] M Raynaud, Anneaux locaux henséliens, 169, Springer (1970) | DOI

[23] M Romagny, Composantes connexes et irréductibles en familles, Manuscripta Math. 136 (2011) 1 | DOI

[24] M Romagny, D Rydh, G Zalamansky, The complexity of a flat groupoid, Doc. Math. 23 (2018) 1157

[25] M Rosenlicht, Some rationality questions on algebraic groups, Ann. Mat. Pura Appl. 43 (1957) 25 | DOI

[26] J P P Dos Santos, Fundamental group schemes for stratified sheaves, J. Algebra 317 (2007) 691 | DOI

[27] J P P Dos Santos, Lifting D–modules from positive to zero characteristic, Bull. Soc. Math. France 139 (2011) 193 | DOI

[28] , The Stacks project, web reference (2005–)

[29] F Tonini, L Zhang, Algebraic and Nori fundamental gerbes, J. Inst. Math. Jussieu 18 (2019) 855 | DOI

[30] F Tonini, L Zhang, F–divided sheaves trivialized by dominant maps are essentially finite, Trans. Amer. Math. Soc. 371 (2019) 5529 | DOI

[31] W C Waterhouse, Introduction to affine group schemes, 66, Springer (1979) | DOI

Cité par Sources :