Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Let be a flat algebraic stack of finite presentation. We define a new étale fundamental pro-groupoid , generalizing Grothendieck’s enlarged étale fundamental group from SGA 3 to the relative situation. When is of equal positive characteristic , we prove that naturally arises as colimit of the system of relative Frobenius morphisms in the pro-category of Deligne Mumford stacks. We give an interpretation of this result as an adjunction between and the stack of –divided objects. In order to obtain these results, we study the existence and properties of relative perfection for algebras in characteristic .
Huang, Yuliang 1 ; Orecchia, Giulio 2 ; Romagny, Matthieu 3
@article{GT_2022_26_7_a6, author = {Huang, Yuliang and Orecchia, Giulio and Romagny, Matthieu}, title = {Unramified {F{\textendash}divided} objects and the \'etale fundamental pro-groupoid in positive characteristic}, journal = {Geometry & topology}, pages = {3221--3306}, publisher = {mathdoc}, volume = {26}, number = {7}, year = {2022}, doi = {10.2140/gt.2022.26.3221}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.3221/} }
TY - JOUR AU - Huang, Yuliang AU - Orecchia, Giulio AU - Romagny, Matthieu TI - Unramified F–divided objects and the étale fundamental pro-groupoid in positive characteristic JO - Geometry & topology PY - 2022 SP - 3221 EP - 3306 VL - 26 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.3221/ DO - 10.2140/gt.2022.26.3221 ID - GT_2022_26_7_a6 ER -
%0 Journal Article %A Huang, Yuliang %A Orecchia, Giulio %A Romagny, Matthieu %T Unramified F–divided objects and the étale fundamental pro-groupoid in positive characteristic %J Geometry & topology %D 2022 %P 3221-3306 %V 26 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.3221/ %R 10.2140/gt.2022.26.3221 %F GT_2022_26_7_a6
Huang, Yuliang; Orecchia, Giulio; Romagny, Matthieu. Unramified F–divided objects and the étale fundamental pro-groupoid in positive characteristic. Geometry & topology, Tome 26 (2022) no. 7, pp. 3221-3306. doi : 10.2140/gt.2022.26.3221. http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.3221/
[1] A note on Frobenius divided modules in mixed characteristics, Bull. Soc. Math. France 140 (2012) 441 | DOI
,[2] The Nori fundamental gerbe of a fibered category, J. Algebraic Geom. 24 (2015) 311 | DOI
, ,[3] The affine class group of a normal scheme, Comm. Algebra 31 (2003) 2849 | DOI
,[4] A theory of 2–pro-objects, Cah. Topol. Géom. Différ. Catég. 55 (2014) 2
, ,[5] Reducedness, formal smoothness and approximation in characteristic p, Comm. Algebra 23 (1995) 1787 | DOI
,[6] Simply connected projective manifolds in characteristic p > 0 have no nontrivial stratified bundles, Invent. Math. 181 (2010) 449 | DOI
, ,[7] Un adjoint, preprint to Fe20 (2019)
,[8] Enveloppe étale de morphismes plats, Algebra Number Theory 16 (2022) 521 | DOI
,[9] Flat vector bundles and the fundamental group in non-zero characteristics, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 2 (1975) 1
,[10] Simplicial homotopy theory, 174, Birkhäuser (1999) | DOI
, ,[11] Éléments de géométrie algébrique, IV : Étude locale des schémas et des morphismes de schémas, II, Inst. Hautes Études Sci. Publ. Math. 24 (1965) 5
,[12] Éléments de géométrie algébrique, IV : Étude locale des schémas et des morphismes de schémas, III, Inst. Hautes Études Sci. Publ. Math. 28 (1966) 5
,[13] Éléments de géométrie algébrique, IV : Étude locale des schémas et des morphismes de schémas, IV, Inst. Hautes Études Sci. Publ. Math. 32 (1967) 5
,[14] Groupes de type multiplicatif : homomorphismes dans un schéma en groupes, from: "Schémas en groupes, Tome II : Groupes de type multiplicatif, et structure des schémas en groupes généraux (SGA )" (editors M Demazure, A Grothendieck), Lecture Notes in Math. 152, Springer (1970)
,[15] Foncteurs fibres, supports, étude cohomologique des morphismes finis, from: "Théorie des topos et cohomologie étale des schémas, Tome 2 (SGA )" (editors M Artin, A Grothendieck, J L Verdier), Lecture Notes in Math. 270, Springer (1972)
,[16] Revêtements étales et groupe fondamental (SGA 1), 3, Soc. Math. France (2003)
,[17] Préfaisceaux, from: "Théorie des topos et cohomologie étale des schémas, Tome 1 : Théorie des topos (SGA )" (editors M Artin, A Grothendieck, J L Verdier), Lecture Notes in Math. 269, Springer (1972)
, ,[18] Simplicial presheaves, J. Pure Appl. Algebra 47 (1987) 35 | DOI
,[19] Duality theories for the p–primary étale cohomology, I, from: "Algebraic and topological theories" (editors M Nagata, S Araki, A Hattori), Kinokuniya (1986) 127
,[20] Characterizations of regular local rings of characteristic p, Amer. J. Math. 91 (1969) 772 | DOI
,[21] Simplicial objects in algebraic topology, 11, Van Nostrand (1967)
,[22] Anneaux locaux henséliens, 169, Springer (1970) | DOI
,[23] Composantes connexes et irréductibles en familles, Manuscripta Math. 136 (2011) 1 | DOI
,[24] The complexity of a flat groupoid, Doc. Math. 23 (2018) 1157
, , ,[25] Some rationality questions on algebraic groups, Ann. Mat. Pura Appl. 43 (1957) 25 | DOI
,[26] Fundamental group schemes for stratified sheaves, J. Algebra 317 (2007) 691 | DOI
,[27] Lifting D–modules from positive to zero characteristic, Bull. Soc. Math. France 139 (2011) 193 | DOI
,[28] , The Stacks project, web reference (2005–)
[29] Algebraic and Nori fundamental gerbes, J. Inst. Math. Jussieu 18 (2019) 855 | DOI
, ,[30] F–divided sheaves trivialized by dominant maps are essentially finite, Trans. Amer. Math. Soc. 371 (2019) 5529 | DOI
, ,[31] Introduction to affine group schemes, 66, Springer (1979) | DOI
,Cité par Sources :