Volume forms on moduli spaces of d–differentials
Geometry & topology, Tome 26 (2022) no. 7, pp. 3173-3220.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Given d , g {0} and an integral vector κ = (k1,,kn) such that ki > d and k1 + + kn = d(2g 2), let Ωdg,n(κ) denote the moduli space of meromorphic d–differentials on Riemann surfaces of genus g whose zeros and poles have orders prescribed by κ. We show that Ωdg,n(κ) carries a canonical volume form that is parallel with respect to its affine complex manifold (orbifold) structure, and that the total volume of Ωdg,n(κ) = Ωdg,n(κ) with respect to the measure induced by this volume form is finite.

DOI : 10.2140/gt.2022.26.3173
Keywords: differentials on Riemann surfaces, moduli space, flat surfaces

Nguyen, Duc-Manh 1

1 Institut de Mathématiques de Bordeaux, Université de Bordeaux, CNRS UMR 5251, Talence, France
@article{GT_2022_26_7_a5,
     author = {Nguyen, Duc-Manh},
     title = {Volume forms on moduli spaces of d{\textendash}differentials},
     journal = {Geometry & topology},
     pages = {3173--3220},
     publisher = {mathdoc},
     volume = {26},
     number = {7},
     year = {2022},
     doi = {10.2140/gt.2022.26.3173},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.3173/}
}
TY  - JOUR
AU  - Nguyen, Duc-Manh
TI  - Volume forms on moduli spaces of d–differentials
JO  - Geometry & topology
PY  - 2022
SP  - 3173
EP  - 3220
VL  - 26
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.3173/
DO  - 10.2140/gt.2022.26.3173
ID  - GT_2022_26_7_a5
ER  - 
%0 Journal Article
%A Nguyen, Duc-Manh
%T Volume forms on moduli spaces of d–differentials
%J Geometry & topology
%D 2022
%P 3173-3220
%V 26
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.3173/
%R 10.2140/gt.2022.26.3173
%F GT_2022_26_7_a5
Nguyen, Duc-Manh. Volume forms on moduli spaces of d–differentials. Geometry & topology, Tome 26 (2022) no. 7, pp. 3173-3220. doi : 10.2140/gt.2022.26.3173. http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.3173/

[1] J S Athreya, A Eskin, A Zorich, Right-angled billiards and volumes of moduli spaces of quadratic differentials on CP1, Ann. Sci. École Norm. Sup. 49 (2016) 1311 | DOI

[2] M Bainbridge, D Chen, Q Gendron, S Grushevsky, M Möller, Strata of k–differentials, Algebr. Geom. 6 (2019) 196 | DOI

[3] P Engel, Hurwitz theory of elliptic orbifolds, I, Geom. Topol. 25 (2021) 229 | DOI

[4] P Engel, P Smillie, The number of convex tilings of the sphere by triangles, squares, or hexagons, Geom. Topol. 22 (2018) 2839 | DOI

[5] H Esnault, E Viehweg, Lectures on vanishing theorems, 20, Birkhäuser (1992) | DOI

[6] B Farb, D Margalit, A primer on mapping class groups, 49, Princeton Univ. Press (2012) | DOI

[7] G Farkas, R Pandharipande, The moduli space of twisted canonical divisors, J. Inst. Math. Jussieu 17 (2018) 615 | DOI

[8] S Ghazouani, L Pirio, Moduli spaces of flat tori with prescribed holonomy, Geom. Funct. Anal. 27 (2017) 1289 | DOI

[9] F Labourie, Cyclic surfaces and Hitchin components in rank 2, Ann. of Math. 185 (2017) 1 | DOI

[10] S K Lando, A K Zvonkin, Graphs on surfaces and their applications, 141, Springer (2004) | DOI

[11] H Masur, Interval exchange transformations and measured foliations, Ann. of Math. (2) 115 (1982) 169 | DOI

[12] H Masur, J Smillie, Hausdorff dimension of sets of nonergodic measured foliations, Ann. of Math. 134 (1991) 455 | DOI

[13] H Masur, S Tabachnikov, Rational billiards and flat structures, from: "Handbook of dynamical systems, IA" (editors B Hasselblatt, A Katok), North-Holland (2002) 1015 | DOI

[14] C T Mcmullen, Braid groups and Hodge theory, Math. Ann. 355 (2013) 893 | DOI

[15] D M Nguyen, Triangulations and volume form on moduli spaces of flat surfaces, Geom. Funct. Anal. 20 (2010) 192 | DOI

[16] D M Nguyen, Energy functions on moduli spaces of flat surfaces with erasing forest, Math. Ann. 353 (2012) 997 | DOI

[17] J Schmitt, Dimension theory of the moduli space of twisted k–differentials, Doc. Math. 23 (2018) 871 | DOI

[18] W P Thurston, Shapes of polyhedra and triangulations of the sphere, from: "The Epstein birthday schrift" (editors I Rivin, C Rourke, C Series), Geom. Topol. Monogr. 1, Geom. Topol. Publ. (1998) 511 | DOI

[19] W A Veech, Moduli spaces of quadratic differentials, J. Analyse Math. 55 (1990) 117 | DOI

[20] W A Veech, Flat surfaces, Amer. J. Math. 115 (1993) 589 | DOI

[21] A Zorich, Flat surfaces, from: "Frontiers in number theory, physics, and geometry, I" (editors P Cartier, B Julia, P Moussa, P Vanhove), Springer (2006) 437 | DOI

Cité par Sources :