Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
A knot in is rationally slice if it bounds a disk in a rational homology ball. We give an infinite family of rationally slice knots that are linearly independent in the knot concordance group. In particular, our examples are all infinite order. All previously known examples of rationally slice knots were order two.
Hom, Jennifer 1 ; Kang, Sungkyung 2 ; Park, JungHwan 3 ; Stoffregen, Matthew 4
@article{GT_2022_26_7_a4, author = {Hom, Jennifer and Kang, Sungkyung and Park, JungHwan and Stoffregen, Matthew}, title = {Linear independence of rationally slice knots}, journal = {Geometry & topology}, pages = {3143--3172}, publisher = {mathdoc}, volume = {26}, number = {7}, year = {2022}, doi = {10.2140/gt.2022.26.3143}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.3143/} }
TY - JOUR AU - Hom, Jennifer AU - Kang, Sungkyung AU - Park, JungHwan AU - Stoffregen, Matthew TI - Linear independence of rationally slice knots JO - Geometry & topology PY - 2022 SP - 3143 EP - 3172 VL - 26 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.3143/ DO - 10.2140/gt.2022.26.3143 ID - GT_2022_26_7_a4 ER -
%0 Journal Article %A Hom, Jennifer %A Kang, Sungkyung %A Park, JungHwan %A Stoffregen, Matthew %T Linear independence of rationally slice knots %J Geometry & topology %D 2022 %P 3143-3172 %V 26 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.3143/ %R 10.2140/gt.2022.26.3143 %F GT_2022_26_7_a4
Hom, Jennifer; Kang, Sungkyung; Park, JungHwan; Stoffregen, Matthew. Linear independence of rationally slice knots. Geometry & topology, Tome 26 (2022) no. 7, pp. 3143-3172. doi : 10.2140/gt.2022.26.3143. http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.3143/
[1] Knot Floer homology and the unknotting number, Geom. Topol. 24 (2020) 2435 | DOI
, ,[2] On slice knots in dimension three, from: "Algebraic and geometric topology, II" (editor R J Milgram), Proc. Sympos. Pure Math. 32, Amer. Math. Soc. (1978) 39
, ,[3] Cobordism of classical knots, from: "À la recherche de la topologie perdue" (editors L Guillou, A Marin), Progr. Math. 62, Birkhäuser (1986) 181
, ,[4] The structure of the rational concordance group of knots, 885, Amer. Math. Soc. (2007) | DOI
,[5] Signatures of links in rational homology spheres, Topology 41 (2002) 1161 | DOI
, ,[6] An infinite-rank summand of the homology cobordism group, preprint (2018)
, , , ,[7] More concordance homomorphisms from knot Floer homology, Geom. Topol. 25 (2021) 275 | DOI
, , , ,[8] A μ–invariant one homology 3–sphere that bounds an orientable rational ball, from: "Four-manifold theory" (editors C Gordon, R Kirby), Contemp. Math. 35, Amer. Math. Soc. (1984) 265 | DOI
, ,[9] Bordered Floer homology for manifolds with torus boundary via immersed curves, preprint (2016)
, , ,[10] Heegaard Floer homology for manifolds with torus boundary: properties and examples, preprint (2018)
, , ,[11] Cabling in terms of immersed curves, (2019)
, ,[12] Noeuds antisimples, from: "Knot theory" (editor J C Hausmann), Lecture Notes in Math. 685, Springer (1978) 171 | DOI
,[13] Applications of involutive Heegaard Floer homology, J. Inst. Math. Jussieu 20 (2021) 187 | DOI
, , ,[14] Surgery exact triangles in involutive Heegaard Floer homology, preprint (2020)
, , , ,[15] Involutive Heegaard Floer homology, Duke Math. J. 166 (2017) 1211 | DOI
, ,[16] The knot Floer complex and the smooth concordance group, Comment. Math. Helv. 89 (2014) 537 | DOI
,[17] Four-ball genus bounds and a refinement of the Ozváth–Szabó tau invariant, J. Symplectic Geom. 14 (2016) 305 | DOI
, ,[18] Rational-slice knots via strongly negative-amphicheiral knots, Commun. Math. Res. 25 (2009) 177
,[19] Les nœuds de dimensions supérieures, Bull. Soc. Math. France 93 (1965) 225
,[20] On rational sliceness of Miyazaki’s fibered, -amphicheiral knots, Bull. Lond. Math. Soc. 50 (2018) 462 | DOI
, ,[21] Secondary upsilon invariants of knots, Q. J. Math. 69 (2018) 799 | DOI
, ,[22] A mnemonic for the Lipshitz–Ozsváth–Thurston correspondence, (2020)
, , ,[23] Gauge theory and Rasmussen’s invariant, J. Topol. 6 (2013) 659 | DOI
, ,[24] Invariants of knot cobordism, Invent. Math. 8 (1969) 98, 355 | DOI
,[25] Knot cobordism groups in codimension two, Comment. Math. Helv. 44 (1969) 229 | DOI
,[26] Upsilon-like concordance invariants from sln knot cohomology, Geom. Topol. 23 (2019) 745 | DOI
, ,[27] Bordered Heegaard Floer homology, 1216, Amer. Math. Soc. (2018) | DOI
, , ,[28] A slice genus lower bound from sl(n) Khovanov–Rozansky homology, Adv. Math. 222 (2009) 1220 | DOI
,[29] A note on Gornik’s perturbation of Khovanov–Rozansky homology, Algebr. Geom. Topol. 12 (2012) 293 | DOI
,[30] Nonsimple, ribbon fibered knots, Trans. Amer. Math. Soc. 341 (1994) 1 | DOI
,[31] Concordance homomorphisms from knot Floer homology, Adv. Math. 315 (2017) 366 | DOI
, , ,[32] Knot Floer homology and the four-ball genus, Geom. Topol. 7 (2003) 615 | DOI
, ,[33] Holomorphic disks and knot invariants, Adv. Math. 186 (2004) 58 | DOI
, ,[34] Cables of thin knots and bordered Heegaard Floer homology, Quantum Topol. 4 (2013) 377 | DOI
,[35] Floer homology and knot complements, PhD thesis, Harvard University (2003)
,[36] Khovanov homology and the slice genus, Invent. Math. 182 (2010) 419 | DOI
,[37] Some cobordism invariants for links, Proc. Cambridge Philos. Soc. 66 (1969) 251 | DOI
,[38] Open problems in geometric topology, from: "Low-dimensional and symplectic topology", Proc. Sympos. Pure Math. 82, Amer. Math. Soc. (2011) 215 | DOI
,[39] On the quantum filtration of the Khovanov–Rozansky cohomology, Adv. Math. 221 (2009) 54 | DOI
,[40] Connected sums and involutive knot Floer homology, Proc. Lond. Math. Soc. 119 (2019) 214 | DOI
,[41] Link cobordisms and functoriality in link Floer homology, J. Topol. 12 (2019) 94 | DOI
,[42] Homology concordance and an infinite rank subgroup, preprint (2020)
,Cité par Sources :