Linear independence of rationally slice knots
Geometry & topology, Tome 26 (2022) no. 7, pp. 3143-3172.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

A knot in S3 is rationally slice if it bounds a disk in a rational homology ball. We give an infinite family of rationally slice knots that are linearly independent in the knot concordance group. In particular, our examples are all infinite order. All previously known examples of rationally slice knots were order two.

DOI : 10.2140/gt.2022.26.3143
Keywords: rationally slice knot, linear independence, involutive knot Floer homology

Hom, Jennifer 1 ; Kang, Sungkyung 2 ; Park, JungHwan 3 ; Stoffregen, Matthew 4

1 School of Mathematics, Georgia Institute of Technology, Atlanta, GA, United States
2 Sungkyung Kang, Center For Geometry and Physics, Institute of Basic Science, Pohang, South Korea
3 Department of Mathematical Sciences, KAIST, Daejeon, South Korea
4 Department of Mathematics, Michigan State University, East Lansing, MI, United States
@article{GT_2022_26_7_a4,
     author = {Hom, Jennifer and Kang, Sungkyung and Park, JungHwan and Stoffregen, Matthew},
     title = {Linear independence of rationally slice knots},
     journal = {Geometry & topology},
     pages = {3143--3172},
     publisher = {mathdoc},
     volume = {26},
     number = {7},
     year = {2022},
     doi = {10.2140/gt.2022.26.3143},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.3143/}
}
TY  - JOUR
AU  - Hom, Jennifer
AU  - Kang, Sungkyung
AU  - Park, JungHwan
AU  - Stoffregen, Matthew
TI  - Linear independence of rationally slice knots
JO  - Geometry & topology
PY  - 2022
SP  - 3143
EP  - 3172
VL  - 26
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.3143/
DO  - 10.2140/gt.2022.26.3143
ID  - GT_2022_26_7_a4
ER  - 
%0 Journal Article
%A Hom, Jennifer
%A Kang, Sungkyung
%A Park, JungHwan
%A Stoffregen, Matthew
%T Linear independence of rationally slice knots
%J Geometry & topology
%D 2022
%P 3143-3172
%V 26
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.3143/
%R 10.2140/gt.2022.26.3143
%F GT_2022_26_7_a4
Hom, Jennifer; Kang, Sungkyung; Park, JungHwan; Stoffregen, Matthew. Linear independence of rationally slice knots. Geometry & topology, Tome 26 (2022) no. 7, pp. 3143-3172. doi : 10.2140/gt.2022.26.3143. http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.3143/

[1] A Alishahi, E Eftekhary, Knot Floer homology and the unknotting number, Geom. Topol. 24 (2020) 2435 | DOI

[2] A J Casson, C M Gordon, On slice knots in dimension three, from: "Algebraic and geometric topology, II" (editor R J Milgram), Proc. Sympos. Pure Math. 32, Amer. Math. Soc. (1978) 39

[3] A J Casson, C M Gordon, Cobordism of classical knots, from: "À la recherche de la topologie perdue" (editors L Guillou, A Marin), Progr. Math. 62, Birkhäuser (1986) 181

[4] J C Cha, The structure of the rational concordance group of knots, 885, Amer. Math. Soc. (2007) | DOI

[5] J C Cha, K H Ko, Signatures of links in rational homology spheres, Topology 41 (2002) 1161 | DOI

[6] I Dai, J Hom, M Stoffregen, L Truong, An infinite-rank summand of the homology cobordism group, preprint (2018)

[7] I Dai, J Hom, M Stoffregen, L Truong, More concordance homomorphisms from knot Floer homology, Geom. Topol. 25 (2021) 275 | DOI

[8] R Fintushel, R J Stern, A μ–invariant one homology 3–sphere that bounds an orientable rational ball, from: "Four-manifold theory" (editors C Gordon, R Kirby), Contemp. Math. 35, Amer. Math. Soc. (1984) 265 | DOI

[9] J Hanselman, J Rasmussen, L Watson, Bordered Floer homology for manifolds with torus boundary via immersed curves, preprint (2016)

[10] J Hanselman, J Rasmussen, L Watson, Heegaard Floer homology for manifolds with torus boundary: properties and examples, preprint (2018)

[11] J Hanselman, L Watson, Cabling in terms of immersed curves, (2019)

[12] J C Hausmann, Noeuds antisimples, from: "Knot theory" (editor J C Hausmann), Lecture Notes in Math. 685, Springer (1978) 171 | DOI

[13] K Hendricks, J Hom, T Lidman, Applications of involutive Heegaard Floer homology, J. Inst. Math. Jussieu 20 (2021) 187 | DOI

[14] K Hendricks, J Hom, M Stoffregen, I Zemke, Surgery exact triangles in involutive Heegaard Floer homology, preprint (2020)

[15] K Hendricks, C Manolescu, Involutive Heegaard Floer homology, Duke Math. J. 166 (2017) 1211 | DOI

[16] J Hom, The knot Floer complex and the smooth concordance group, Comment. Math. Helv. 89 (2014) 537 | DOI

[17] J Hom, Z Wu, Four-ball genus bounds and a refinement of the Ozváth–Szabó tau invariant, J. Symplectic Geom. 14 (2016) 305 | DOI

[18] A Kawauchi, Rational-slice knots via strongly negative-amphicheiral knots, Commun. Math. Res. 25 (2009) 177

[19] M A Kervaire, Les nœuds de dimensions supérieures, Bull. Soc. Math. France 93 (1965) 225

[20] M H Kim, Z Wu, On rational sliceness of Miyazaki’s fibered, -amphicheiral knots, Bull. Lond. Math. Soc. 50 (2018) 462 | DOI

[21] S G Kim, C Livingston, Secondary upsilon invariants of knots, Q. J. Math. 69 (2018) 799 | DOI

[22] A Kotelskiy, L Watson, C Zibrowius, A mnemonic for the Lipshitz–Ozsváth–Thurston correspondence, (2020)

[23] P B Kronheimer, T S Mrowka, Gauge theory and Rasmussen’s invariant, J. Topol. 6 (2013) 659 | DOI

[24] J Levine, Invariants of knot cobordism, Invent. Math. 8 (1969) 98, 355 | DOI

[25] J Levine, Knot cobordism groups in codimension two, Comment. Math. Helv. 44 (1969) 229 | DOI

[26] L Lewark, A Lobb, Upsilon-like concordance invariants from sln knot cohomology, Geom. Topol. 23 (2019) 745 | DOI

[27] R Lipshitz, P S Ozsváth, D P Thurston, Bordered Heegaard Floer homology, 1216, Amer. Math. Soc. (2018) | DOI

[28] A Lobb, A slice genus lower bound from sl(n) Khovanov–Rozansky homology, Adv. Math. 222 (2009) 1220 | DOI

[29] A Lobb, A note on Gornik’s perturbation of Khovanov–Rozansky homology, Algebr. Geom. Topol. 12 (2012) 293 | DOI

[30] K Miyazaki, Nonsimple, ribbon fibered knots, Trans. Amer. Math. Soc. 341 (1994) 1 | DOI

[31] P S Ozsváth, A I Stipsicz, Z Szabó, Concordance homomorphisms from knot Floer homology, Adv. Math. 315 (2017) 366 | DOI

[32] P Ozsváth, Z Szabó, Knot Floer homology and the four-ball genus, Geom. Topol. 7 (2003) 615 | DOI

[33] P Ozsváth, Z Szabó, Holomorphic disks and knot invariants, Adv. Math. 186 (2004) 58 | DOI

[34] I Petkova, Cables of thin knots and bordered Heegaard Floer homology, Quantum Topol. 4 (2013) 377 | DOI

[35] J A Rasmussen, Floer homology and knot complements, PhD thesis, Harvard University (2003)

[36] J Rasmussen, Khovanov homology and the slice genus, Invent. Math. 182 (2010) 419 | DOI

[37] A G Tristram, Some cobordism invariants for links, Proc. Cambridge Philos. Soc. 66 (1969) 251 | DOI

[38] M Usher (Editor), Open problems in geometric topology, from: "Low-dimensional and symplectic topology", Proc. Sympos. Pure Math. 82, Amer. Math. Soc. (2011) 215 | DOI

[39] H Wu, On the quantum filtration of the Khovanov–Rozansky cohomology, Adv. Math. 221 (2009) 54 | DOI

[40] I Zemke, Connected sums and involutive knot Floer homology, Proc. Lond. Math. Soc. 119 (2019) 214 | DOI

[41] I Zemke, Link cobordisms and functoriality in link Floer homology, J. Topol. 12 (2019) 94 | DOI

[42] H Zhou, Homology concordance and an infinite rank subgroup, preprint (2020)

Cité par Sources :