Stability conditions and moduli spaces for Kuznetsov components of Gushel–Mukai varieties
Geometry & topology, Tome 26 (2022) no. 7, pp. 3055-3121.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove the existence of Bridgeland stability conditions on the Kuznetsov components of Gushel–Mukai varieties, and describe the structure of moduli spaces of Bridgeland semistable objects in these categories in the even-dimensional case. As applications, we construct a new infinite series of unirational locally complete families of polarized hyperkähler varieties of K3 type, and characterize Hodge-theoretically when the Kuznetsov component of an even-dimensional Gushel–Mukai variety is equivalent to the derived category of a K3 surface.

DOI : 10.2140/gt.2022.26.3055
Keywords: stability conditions, Gushel–Mukai varieties, semiorthogonal decompositions, K3 surfaces, hyperkähler manifolds

Perry, Alexander 1 ; Pertusi, Laura 2 ; Zhao, Xiaolei 3

1 Department of Mathematics, University of Michigan, Ann Arbor, MI, United States
2 Dipartimento di Matematica Federigo Enriques, Università degli Studi di Milano, Milano, Italy
3 Department of Mathematics, University of California, Santa Barbara, Santa Barbara, CA, United States
@article{GT_2022_26_7_a2,
     author = {Perry, Alexander and Pertusi, Laura and Zhao, Xiaolei},
     title = {Stability conditions and moduli spaces for {Kuznetsov} components of {Gushel{\textendash}Mukai} varieties},
     journal = {Geometry & topology},
     pages = {3055--3121},
     publisher = {mathdoc},
     volume = {26},
     number = {7},
     year = {2022},
     doi = {10.2140/gt.2022.26.3055},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.3055/}
}
TY  - JOUR
AU  - Perry, Alexander
AU  - Pertusi, Laura
AU  - Zhao, Xiaolei
TI  - Stability conditions and moduli spaces for Kuznetsov components of Gushel–Mukai varieties
JO  - Geometry & topology
PY  - 2022
SP  - 3055
EP  - 3121
VL  - 26
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.3055/
DO  - 10.2140/gt.2022.26.3055
ID  - GT_2022_26_7_a2
ER  - 
%0 Journal Article
%A Perry, Alexander
%A Pertusi, Laura
%A Zhao, Xiaolei
%T Stability conditions and moduli spaces for Kuznetsov components of Gushel–Mukai varieties
%J Geometry & topology
%D 2022
%P 3055-3121
%V 26
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.3055/
%R 10.2140/gt.2022.26.3055
%F GT_2022_26_7_a2
Perry, Alexander; Pertusi, Laura; Zhao, Xiaolei. Stability conditions and moduli spaces for Kuznetsov components of Gushel–Mukai varieties. Geometry & topology, Tome 26 (2022) no. 7, pp. 3055-3121. doi : 10.2140/gt.2022.26.3055. http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.3055/

[1] N Addington, R Thomas, Hodge theory and derived categories of cubic fourfolds, Duke Math. J. 163 (2014) 1885 | DOI

[2] A Auel, M Bernardara, M Bolognesi, Fibrations in complete intersections of quadrics, Clifford algebras, derived categories, and rationality problems, J. Math. Pures Appl. 102 (2014) 249 | DOI

[3] A Bayer, M Lahoz, E Macrì, H Nuer, A Perry, P Stellari, Stability conditions in families, Publ. Math. Inst. Hautes Études Sci. 133 (2021) 157 | DOI

[4] A Bayer, M Lahoz, E Macrì, P Stellari, Stability conditions on Kuznetsov components, preprint (2017)

[5] A Bayer, E Macrì, Projectivity and birational geometry of Bridgeland moduli spaces, J. Amer. Math. Soc. 27 (2014) 707 | DOI

[6] A Bayer, E Macrì, P Stellari, The space of stability conditions on abelian threefolds, and on some Calabi–Yau threefolds, Invent. Math. 206 (2016) 869 | DOI

[7] A Bayer, E Macrì, Y Toda, Bridgeland stability conditions on threefolds, I : Bogomolov–Gieseker type inequalities, J. Algebraic Geom. 23 (2014) 117 | DOI

[8] A Beauville, R Donagi, La variété des droites d’une hypersurface cubique de dimension 4, C. R. Acad. Sci. Paris Sér. I Math. 301 (1985) 703

[9] P Belmans, A J De Jong, Others, The Stacks project, electronic reference (2005–)

[10] M Bernardara, E Macrì, S Mehrotra, P Stellari, A categorical invariant for cubic threefolds, Adv. Math. 229 (2012) 770 | DOI

[11] T Bridgeland, Stability conditions on triangulated categories, Ann. of Math. 166 (2007) 317 | DOI

[12] T Bridgeland, Stability conditions on K3 surfaces, Duke Math. J. 141 (2008) 241 | DOI

[13] J Collins, A Polishchuk, Gluing stability conditions, Adv. Theor. Math. Phys. 14 (2010) 563 | DOI

[14] O Debarre, Hyperkähler manifolds, preprint (2018)

[15] O Debarre, A Iliev, L Manivel, On the period map for prime Fano threefolds of degree 10, J. Algebraic Geom. 21 (2012) 21 | DOI

[16] O Debarre, A Iliev, L Manivel, Special prime Fano fourfolds of degree 10 and index 2, from: "Recent advances in algebraic geometry" (editors C D Hacon, M Mustaţă, M Popa), London Math. Soc. Lecture Note Ser. 417, Cambridge Univ. Press (2015) 123 | DOI

[17] O Debarre, A Kuznetsov, Gushel–Mukai varieties : classification and birationalities, Algebr. Geom. 5 (2018) 15 | DOI

[18] O Debarre, A Kuznetsov, Gushel–Mukai varieties : linear spaces and periods, Kyoto J. Math. 59 (2019) 897 | DOI

[19] O Debarre, A Kuznetsov, Gushel–Mukai varieties : moduli, Internat. J. Math. 31 (2020) | DOI

[20] P Griffiths, J Harris, Principles of algebraic geometry, Wiley (1978) | DOI

[21] N P Gushel, Fano varieties of genus 6, Izv. Akad. Nauk SSSR Ser. Mat. 46 (1982) 1159

[22] D Happel, I Reiten, S O Smalø, Tilting in abelian categories and quasitilted algebras, 575, Amer. Math. Soc. (1996) | DOI

[23] D Huybrechts, The K3 category of a cubic fourfold, Compos. Math. 153 (2017) 586 | DOI

[24] A Iliev, G Kapustka, M Kapustka, K Ranestad, EPW cubes, J. Reine Angew. Math. 748 (2019) 241 | DOI

[25] A Iliev, L Manivel, Fano manifolds of degree ten and EPW sextics, Ann. Sci. Éc. Norm. Supér. 44 (2011) 393 | DOI

[26] V A Iskovskikh, Y G Prokhorov, Fano varieties, 47, Springer (1999) 1

[27] A Kuznetsov, Derived categories of quadric fibrations and intersections of quadrics, Adv. Math. 218 (2008) 1340 | DOI

[28] A Kuznetsov, Lefschetz decompositions and categorical resolutions of singularities, Selecta Math. 13 (2008) 661 | DOI

[29] A Kuznetsov, Derived categories of cubic fourfolds, from: "Cohomological and geometric approaches to rationality problems" (editors F Bogomolov, Y Tschinkel), Progr. Math. 282, Birkhäuser (2010) 219 | DOI

[30] A Kuznetsov, Calabi–Yau and fractional Calabi–Yau categories, J. Reine Angew. Math. 753 (2019) 239 | DOI

[31] A Kuznetsov, D Markushevich, Symplectic structures on moduli spaces of sheaves via the Atiyah class, J. Geom. Phys. 59 (2009) 843 | DOI

[32] A Kuznetsov, A Perry, Derived categories of cyclic covers and their branch divisors, Selecta Math. 23 (2017) 389 | DOI

[33] A Kuznetsov, A Perry, Derived categories of Gushel–Mukai varieties, Compos. Math. 154 (2018) 1362 | DOI

[34] A Kuznetsov, A Perry, Categorical cones and quadratic homological projective duality, preprint (2019)

[35] A Langer, Semistable sheaves in positive characteristic, Ann. of Math. 159 (2004) 251 | DOI

[36] R Laza, G Saccà, C Voisin, A hyper-Kähler compactification of the intermediate Jacobian fibration associated with a cubic 4–fold, Acta Math. 218 (2017) 55 | DOI

[37] C Lehn, M Lehn, C Sorger, D Van Straten, Twisted cubics on cubic fourfolds, J. Reine Angew. Math. 731 (2017) 87 | DOI

[38] C Li, L Pertusi, X Zhao, Twisted cubics on cubic fourfolds and stability conditions, preprint (2018)

[39] C Li, L Pertusi, X Zhao, Elliptic quintics on cubic fourfolds, O’Grady 10, and Lagrangian fibrations, Adv. Math. 408 (2022) | DOI

[40] S Mukai, Biregular classification of Fano 3–folds and Fano manifolds of coindex 3, Proc. Nat. Acad. Sci. U.S.A. 86 (1989) 3000 | DOI

[41] V V Nikulin, Integer symmetric bilinear forms and some of their geometric applications, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979) 111

[42] K G O’Grady, Irreducible symplectic 4–folds and Eisenbud–Popescu–Walter sextics, Duke Math. J. 134 (2006) 99 | DOI

[43] K G O’Grady, Dual double EPW-sextics and their periods, Pure Appl. Math. Q. 4 (2008) 427 | DOI

[44] K G O’Grady, Periods of double EPW-sextics, Math. Z. 280 (2015) 485 | DOI

[45] A Perry, The integral Hodge conjecture for two-dimensional Calabi–Yau categories, Compos. Math. 158 (2022) 287 | DOI

[46] L Pertusi, On the double EPW sextic associated to a Gushel–Mukai fourfold, J. Lond. Math. Soc. 100 (2019) 83 | DOI

[47] M Verbitsky, Mapping class group and a global Torelli theorem for hyperkähler manifolds, Duke Math. J. 162 (2013) 2929 | DOI

Cité par Sources :