The cosmetic crossing conjecture for split links
Geometry & topology, Tome 26 (2022) no. 7, pp. 2941-3053.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Given a band sum of a split two-component link along a nontrivial band, we obtain a family of knots indexed by the integers by adding any number of full twists to the band. We show that the knots in this family have the same Heegaard knot Floer homology and the same instanton knot Floer homology. In contrast, a generalization of the cosmetic crossing conjecture predicts that the knots in this family are all distinct. We verify this prediction by showing that any two knots in this family have distinct Khovanov homology. Along the way, we prove that each of the three knot homologies detects the trivial band.

DOI : 10.2140/gt.2022.26.2941
Keywords: cosmetic, crossing, nugatory, Khovanov, Floer, instanton, Heegaard Floer, knot Floer, band sum, split links, detection

Wang, Joshua 1

1 Department of Mathematics, Harvard University, Cambridge, MA, United States
@article{GT_2022_26_7_a1,
     author = {Wang, Joshua},
     title = {The cosmetic crossing conjecture for split links},
     journal = {Geometry & topology},
     pages = {2941--3053},
     publisher = {mathdoc},
     volume = {26},
     number = {7},
     year = {2022},
     doi = {10.2140/gt.2022.26.2941},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.2941/}
}
TY  - JOUR
AU  - Wang, Joshua
TI  - The cosmetic crossing conjecture for split links
JO  - Geometry & topology
PY  - 2022
SP  - 2941
EP  - 3053
VL  - 26
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.2941/
DO  - 10.2140/gt.2022.26.2941
ID  - GT_2022_26_7_a1
ER  - 
%0 Journal Article
%A Wang, Joshua
%T The cosmetic crossing conjecture for split links
%J Geometry & topology
%D 2022
%P 2941-3053
%V 26
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.2941/
%R 10.2140/gt.2022.26.2941
%F GT_2022_26_7_a1
Wang, Joshua. The cosmetic crossing conjecture for split links. Geometry & topology, Tome 26 (2022) no. 7, pp. 2941-3053. doi : 10.2140/gt.2022.26.2941. http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.2941/

[1] A S Alishahi, E Eftekhary, A refinement of sutured Floer homology, J. Symplectic Geom. 13 (2015) 609 | DOI

[2] J A Baldwin, M Hedden, A Lobb, On the functoriality of Khovanov–Floer theories, Adv. Math. 345 (2019) 1162 | DOI

[3] J A Baldwin, S Sivek, Naturality in sutured monopole and instanton homology, J. Differential Geom. 100 (2015) 395

[4] J A Baldwin, S Sivek, Instanton Floer homology and contact structures, Selecta Math. 22 (2016) 939 | DOI

[5] J A Baldwin, S Sivek, Khovanov homology detects the trefoils, Duke Math. J. 171 (2022) 885 | DOI

[6] C Balm, S Friedl, E Kalfagianni, M Powell, Cosmetic crossings and Seifert matrices, Comm. Anal. Geom. 20 (2012) 235 | DOI

[7] C J Balm, E Kalfagianni, Knots without cosmetic crossings, Topology Appl. 207 (2016) 33 | DOI

[8] D Bar-Natan, On Khovanov’s categorification of the Jones polynomial, Algebr. Geom. Topol. 2 (2002) 337 | DOI

[9] D Bar-Natan, Khovanov’s homology for tangles and cobordisms, Geom. Topol. 9 (2005) 1443 | DOI

[10] A Daemi, T Lidman, D S Vela-Vick, C M M Wong, Ribbon homology cobordisms, Adv. Math. 408 (2022) | DOI

[11] J B Etnyre, D S Vela-Vick, R Zarev, Sutured Floer homology and invariants of Legendrian and transverse knots, Geom. Topol. 21 (2017) 1469 | DOI

[12] A Floer, An instanton-invariant for 3–manifolds, Comm. Math. Phys. 118 (1988) 215 | DOI

[13] A Floer, Instanton homology, surgery, and knots, from: "Geometry of low-dimensional manifolds, I" (editors S K Donaldson, C B Thomas), London Math. Soc. Lecture Note Ser. 150, Cambridge Univ. Press (1990) 97 | DOI

[14] D Gabai, Foliations and the topology of 3–manifolds, J. Differential Geom. 18 (1983) 445

[15] D Gabai, Foliations and the topology of 3–manifolds, II, J. Differential Geom. 26 (1987) 461

[16] D Gabai, Genus is superadditive under band connected sum, Topology 26 (1987) 209 | DOI

[17] S Ghosh, Z Li, Decomposing sutured monopole and Instanton Floer homologies, preprint (2019)

[18] S Ghosh, Z Li, C M M Wong, On the tau invariants in instanton and monopole Floer theories, preprint (2019)

[19] E Giroux, Structures de contact en dimension trois et bifurcations des feuilletages de surfaces, Invent. Math. 141 (2000) 615 | DOI

[20] M Hedden, L Watson, On the geography and botany of knot Floer homology, Selecta Math. 24 (2018) 997 | DOI

[21] K Honda, On the classification of tight contact structures, I, Geom. Topol. 4 (2000) 309 | DOI

[22] K Honda, Gluing tight contact structures, Duke Math. J. 115 (2002) 435 | DOI

[23] K Honda, W H Kazez, G Matic, Contact structures, sutured Floer homology and TQFT, preprint (2008)

[24] M Jacobsson, An invariant of link cobordisms from Khovanov homology, Algebr. Geom. Topol. 4 (2004) 1211 | DOI

[25] A Juhász, Holomorphic discs and sutured manifolds, Algebr. Geom. Topol. 6 (2006) 1429 | DOI

[26] A Juhász, Floer homology and surface decompositions, Geom. Topol. 12 (2008) 299 | DOI

[27] A Juhász, The sutured Floer homology polytope, Geom. Topol. 14 (2010) 1303 | DOI

[28] A Juhász, Cobordisms of sutured manifolds and the functoriality of link Floer homology, Adv. Math. 299 (2016) 940 | DOI

[29] A Juhász, M Marengon, Concordance maps in knot Floer homology, Geom. Topol. 20 (2016) 3623 | DOI

[30] A Juhász, I Zemke, Contact handles, duality, and sutured Floer homology, Geom. Topol. 24 (2020) 179 | DOI

[31] E Kalfagianni, Cosmetic crossing changes of fibered knots, J. Reine Angew. Math. 669 (2012) 151 | DOI

[32] N Kavi, Cutting and gluing surfaces, preprint (2019)

[33] M Khovanov, A categorification of the Jones polynomial, Duke Math. J. 101 (2000) 359 | DOI

[34] R Kirby, Problems in low-dimensional topology, from: "Geometric topology", AMS/IP Stud. Adv. Math. 2, Amer. Math. Soc. (1997) 35 | DOI

[35] T Kobayashi, Fibered links which are band connected sum of two links, from: "Knots 90" (editor A Kawauchi), de Gruyter (1992) 9 | DOI

[36] P Kronheimer, T Mrowka, Instanton Floer homology and the Alexander polynomial, Algebr. Geom. Topol. 10 (2010) 1715 | DOI

[37] P Kronheimer, T Mrowka, Knots, sutures, and excision, J. Differential Geom. 84 (2010) 301

[38] P B Kronheimer, T S Mrowka, Khovanov homology is an unknot-detector, Publ. Math. Inst. Hautes Études Sci. 113 (2011) 97 | DOI

[39] P Kronheimer, T Mrowka, Filtrations on instanton homology, Quantum Topol. 5 (2014) 61 | DOI

[40] P B Kronheimer, T S Mrowka, Tait colorings, and an instanton homology for webs and foams, J. Eur. Math. Soc. 21 (2019) 55 | DOI

[41] A S Levine, I Zemke, Khovanov homology and ribbon concordances, Bull. Lond. Math. Soc. 51 (2019) 1099 | DOI

[42] Z Li, Gluing maps and cobordism maps for sutured monopole Floer homology, preprint (2018)

[43] Z Li, Knot homologies in monopole and instanton theories via sutures, J. Symplectic Geom. 19 (2021) 1339 | DOI

[44] T Lidman, A H Moore, Cosmetic surgery in L-spaces and nugatory crossings, Trans. Amer. Math. Soc. 369 (2017) 3639 | DOI

[45] Y Lim, Instanton homology and the Alexander polynomial, Proc. Amer. Math. Soc. 138 (2010) 3759 | DOI

[46] C Manolescu, P Ozsváth, Heegaard Floer homology and integer surgeries on links, preprint (2010)

[47] K Miyazaki, Band-sums are ribbon concordant to the connected sum, Proc. Amer. Math. Soc. 126 (1998) 3401 | DOI

[48] K Miyazaki, When is a band-connected sum equal to the connected sum?, Topology Appl. 272 (2020) | DOI

[49] A H Moore, Symmetric unions without cosmetic crossing changes, from: "Advances in the mathematical sciences" (editors G Letzter, K Lauter, E Chambers, N Flournoy, J E Grigsby, C Martin, K Ryan, K Trivisa), Assoc. Women Math. Ser. 6, Springer (2016) 103 | DOI

[50] V Muñoz, Ring structure of the Floer cohomology of Σ × S1, Topology 38 (1999) 517 | DOI

[51] Y Ni, Knot Floer homology detects fibred knots, Invent. Math. 170 (2007) 577 | DOI

[52] B Ozbagci, Contact handle decompositions, Topology Appl. 158 (2011) 718 | DOI

[53] P S Ozsváth, J Rasmussen, Z Szabó, Odd Khovanov homology, Algebr. Geom. Topol. 13 (2013) 1465 | DOI

[54] P S Ozsváth, A I Stipsicz, Z Szabó, Grid homology for knots and links, 208, Amer. Math. Soc. (2015) | DOI

[55] P Ozsváth, Z Szabó, Holomorphic disks and genus bounds, Geom. Topol. 8 (2004) 311 | DOI

[56] P Ozsváth, Z Szabó, Holomorphic disks and knot invariants, Adv. Math. 186 (2004) 58 | DOI

[57] P Ozsváth, Z Szabó, Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. 159 (2004) 1027 | DOI

[58] P Ozsváth, Z Szabó, On the skein exact squence for knot Floer homology, preprint (2007)

[59] P Ozsváth, Z Szabó, Holomorphic disks, link invariants and the multi-variable Alexander polynomial, Algebr. Geom. Topol. 8 (2008) 615 | DOI

[60] P Ozsváth, Z Szabó, Link Floer homology and the Thurston norm, J. Amer. Math. Soc. 21 (2008) 671 | DOI

[61] J A Rasmussen, Floer homology and knot complements, PhD thesis, Harvard University (2003)

[62] J Rasmussen, Knot polynomials and knot homologies, from: "Geometry and topology of manifolds" (editors H U Boden, I Hambleton, A J Nicas, B D Park), Fields Inst. Commun. 47, Amer. Math. Soc. (2005) 261 | DOI

[63] A N Shumakovitch, Torsion of Khovanov homology, Fund. Math. 225 (2014) 343 | DOI

[64] A Thompson, Property P for the band-connect sum of two knots, Topology 26 (1987) 205 | DOI

[65] I Torisu, On nugatory crossings for knots, Topology Appl. 92 (1999) 119 | DOI

[66] I Zemke, Knot Floer homology obstructs ribbon concordance, Ann. of Math. 190 (2019) 931 | DOI

[67] I Zemke, Link cobordisms and absolute gradings on link Floer homology, Quantum Topol. 10 (2019) 207 | DOI

[68] I Zemke, Link cobordisms and functoriality in link Floer homology, J. Topol. 12 (2019) 94 | DOI

Cité par Sources :