Towards logarithmic GLSM : the r–spin case
Geometry & topology, Tome 26 (2022) no. 7, pp. 2855-2939.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We establish the logarithmic foundation for compactifying the moduli stacks of the gauged linear sigma model using stable log maps. We then illustrate our method via the key example of Witten’s r–spin class to construct a proper moduli stack with a reduced perfect obstruction theory whose virtual cycle recovers the r–spin virtual cycle of Chang, Li and Li. Indeed, our construction of the reduced virtual cycle is built upon their work by appropriately extending and modifying the Kiem–Li cosection along certain logarithmic boundary. In a follow-up article, we push the technique to a general situation.

One motivation of our construction is to fit the gauged linear sigma model in the broader setting of Gromov–Witten theory so that powerful tools such as virtual localization can be applied. A project along this line is currently in progress, leading to applications including computing loci of holomorphic differentials, and calculating higher-genus Gromov–Witten invariants of quintic threefolds.

DOI : 10.2140/gt.2022.26.2855
Classification : 14D23, 14N35
Keywords: $r$–spin, stable logarithmic maps, virtual cycles

Chen, Qile 1 ; Janda, Felix 2 ; Ruan, Yongbin 3 ; Sauvaget, Adrien 4

1 Department of Mathematics, Boston College, Chestnut Hill, MA, United States
2 Department of Mathematics, University of Notre Dame, Notre Dame, IN, United States
3 Institute for Advanced Study in Mathematics, Zhejiang University, Hangzhou, China
4 Institut de Mathématiques de Jussieu, Université Pierre et Marie Curie, Paris, France, CNRS, Université de Cergy–Pontoise, Laboratoire de Mathématiques AGM, UMR 8088, Cergy-Pontoise, France
@article{GT_2022_26_7_a0,
     author = {Chen, Qile and Janda, Felix and Ruan, Yongbin and Sauvaget, Adrien},
     title = {Towards logarithmic {GLSM} : the r{\textendash}spin case},
     journal = {Geometry & topology},
     pages = {2855--2939},
     publisher = {mathdoc},
     volume = {26},
     number = {7},
     year = {2022},
     doi = {10.2140/gt.2022.26.2855},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.2855/}
}
TY  - JOUR
AU  - Chen, Qile
AU  - Janda, Felix
AU  - Ruan, Yongbin
AU  - Sauvaget, Adrien
TI  - Towards logarithmic GLSM : the r–spin case
JO  - Geometry & topology
PY  - 2022
SP  - 2855
EP  - 2939
VL  - 26
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.2855/
DO  - 10.2140/gt.2022.26.2855
ID  - GT_2022_26_7_a0
ER  - 
%0 Journal Article
%A Chen, Qile
%A Janda, Felix
%A Ruan, Yongbin
%A Sauvaget, Adrien
%T Towards logarithmic GLSM : the r–spin case
%J Geometry & topology
%D 2022
%P 2855-2939
%V 26
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.2855/
%R 10.2140/gt.2022.26.2855
%F GT_2022_26_7_a0
Chen, Qile; Janda, Felix; Ruan, Yongbin; Sauvaget, Adrien. Towards logarithmic GLSM : the r–spin case. Geometry & topology, Tome 26 (2022) no. 7, pp. 2855-2939. doi : 10.2140/gt.2022.26.2855. http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.2855/

[1] D Abramovich, C Cadman, B Fantechi, J Wise, Expanded degenerations and pairs, Comm. Algebra 41 (2013) 2346 | DOI

[2] D Abramovich, Q Chen, Stable logarithmic maps to Deligne–Faltings pairs, II, Asian J. Math. 18 (2014) 465 | DOI

[3] D Abramovich, Q Chen, M Gross, B Siebert, Decomposition of degenerate Gromov–Witten invariants, Compos. Math. 156 (2020) 2020 | DOI

[4] D Abramovich, Q Chen, S Marcus, J Wise, Boundedness of the space of stable logarithmic maps, J. Eur. Math. Soc. 19 (2017) 2783 | DOI

[5] D Abramovich, B Fantechi, Orbifold techniques in degeneration formulas, Ann. Sc. Norm. Super. Pisa Cl. Sci. 16 (2016) 519 | DOI

[6] D Abramovich, T J Jarvis, Moduli of twisted spin curves, Proc. Amer. Math. Soc. 131 (2003) 685 | DOI

[7] D Abramovich, A Vistoli, Compactifying the space of stable maps, J. Amer. Math. Soc. 15 (2002) 27 | DOI

[8] D Abramovich, J Wise, Birational invariance in logarithmic Gromov–Witten theory, Compos. Math. 154 (2018) 595 | DOI

[9] K Behrend, B Fantechi, The intrinsic normal cone, Invent. Math. 128 (1997) 45 | DOI

[10] P Belmans, A J De Jong, Others, The Stacks project, electronic reference (2005–)

[11] J Bryan, N C Leung, The enumerative geometry of K3 surfaces and modular forms, J. Amer. Math. Soc. 13 (2000) 371 | DOI

[12] H L Chang, Y H Kiem, J Li, Torus localization and wall crossing for cosection localized virtual cycles, Adv. Math. 308 (2017) 964 | DOI

[13] H L Chang, Y H Kiem, J Li, Algebraic virtual cycles for quantum singularity theories, Comm. Anal. Geom. 29 (2021) 1749 | DOI

[14] H L Chang, J Li, Gromov–Witten invariants of stable maps with fields, Int. Math. Res. Not. 2012 (2012) 4163 | DOI

[15] H L Chang, J Li, W P Li, Witten’s top Chern class via cosection localization, Invent. Math. 200 (2015) 1015 | DOI

[16] D Chen, Q Chen, Spin and hyperelliptic structures of log twisted differentials, Selecta Math. 25 (2019) | DOI

[17] Q Chen, Stable logarithmic maps to Deligne–Faltings pairs, I, Ann. of Math. 180 (2014) 455 | DOI

[18] Q. Chen, F. Janda, R. Pandharipande, Y. Ruan, A. Sauvaget, J. Schmitt, D. Zvonkine, Holomorphic differentials via Witten’s r–spin class, in preparation

[19] Q. Chen, F. Janda, Y. Ruan, The structural formulae of virtual cycles in logarithmic gauged linear sigma models, in preparation

[20] Q Chen, F Janda, Y Ruan, The logarithmic gauged linear sigma model, Invent. Math. 225 (2021) 1077 | DOI

[21] Q Chen, F Janda, Y Ruan, Punctured logarithmic R–maps, preprint (2022)

[22] A Chiodo, Stable twisted curves and their r–spin structures, Ann. Inst. Fourier (Grenoble) 58 (2008) 1635 | DOI

[23] K Costello, Higher genus Gromov–Witten invariants as genus zero invariants of symmetric products, Ann. of Math. 164 (2006) 561 | DOI

[24] C Faber, S Shadrin, D Zvonkine, Tautological relations and the r–spin Witten conjecture, Ann. Sci. Éc. Norm. Supér. 43 (2010) 621 | DOI

[25] H Fan, T Jarvis, Y Ruan, The Witten equation, mirror symmetry, and quantum singularity theory, Ann. of Math. 178 (2013) 1 | DOI

[26] H Fan, T J Jarvis, Y Ruan, A mathematical theory of the gauged linear sigma model, Geom. Topol. 22 (2018) 235 | DOI

[27] T Graber, R Pandharipande, Localization of virtual classes, Invent. Math. 135 (1999) 487 | DOI

[28] M Gross, B Siebert, Logarithmic Gromov–Witten invariants, J. Amer. Math. Soc. 26 (2013) 451 | DOI

[29] J Guéré, A generalization of the double ramification cycle via log-geometry, preprint (2016)

[30] S Guo, F Janda, Y Ruan, A mirror theorem for genus two Gromov–Witten invariants of quintic threefolds, preprint (2017)

[31] S Guo, F Janda, Y Ruan, Structure of higher genus Gromov–Witten invariants of quintic 3–folds, preprint (2018)

[32] J Hall, D Rydh, Coherent Tannaka duality and algebraicity of Hom-stacks, Algebra Number Theory 13 (2019) 1633 | DOI

[33] E N Ionel, T H Parker, Relative Gromov–Witten invariants, Ann. of Math. 157 (2003) 45 | DOI

[34] E N Ionel, T H Parker, The symplectic sum formula for Gromov–Witten invariants, Ann. of Math. 159 (2004) 935 | DOI

[35] T J Jarvis, Torsion-free sheaves and moduli of generalized spin curves, Compositio Math. 110 (1998) 291 | DOI

[36] T J Jarvis, Geometry of the moduli of higher spin curves, Internat. J. Math. 11 (2000) 637 | DOI

[37] K Kato, Logarithmic structures of Fontaine–Illusie, from: "Algebraic analysis, geometry, and number theory" (editor J I Igusa), Johns Hopkins Univ. Press (1989) 191

[38] A A Khan, D Rydh, Virtual Cartier divisors and blow-ups, preprint (2018)

[39] Y H Kiem, J Li, Localizing virtual cycles by cosections, J. Amer. Math. Soc. 26 (2013) 1025 | DOI

[40] Y H Kiem, J Li, Quantum singularity theory via cosection localization, J. Reine Angew. Math. 766 (2020) 73 | DOI

[41] B Kim, Logarithmic stable maps, from: "New developments in algebraic geometry, integrable systems and mirror symmetry" (editors M H Saito, S Hosono, K Yoshioka), Adv. Stud. Pure Math. 59, Math. Soc. Japan (2010) 167 | DOI

[42] A M Li, Y Ruan, Symplectic surgery and Gromov–Witten invariants of Calabi–Yau 3–folds, Invent. Math. 145 (2001) 151 | DOI

[43] J Li, Stable morphisms to singular schemes and relative stable morphisms, J. Differential Geom. 57 (2001) 509

[44] J Li, A degeneration formula of GW-invariants, J. Differential Geom. 60 (2002) 199

[45] C Manolache, Virtual pull-backs, J. Algebraic Geom. 21 (2012) 201 | DOI

[46] M C Olsson, Logarithmic geometry and algebraic stacks, Ann. Sci. École Norm. Sup. 36 (2003) 747 | DOI

[47] M C Olsson, The logarithmic cotangent complex, Math. Ann. 333 (2005) 859 | DOI

[48] M C Olsson, (Log) twisted curves, Compos. Math. 143 (2007) 476 | DOI

[49] R Pandharipande, A Pixton, D Zvonkine, Tautological relations via r–spin structures, J. Algebraic Geom. 28 (2019) 439 | DOI

[50] B Parker, Gromov Witten invariants of exploded manifolds, preprint (2011)

[51] B Parker, Exploded manifolds, Adv. Math. 229 (2012) 3256 | DOI

[52] B Parker, Holomorphic curves in exploded manifolds: compactness, Adv. Math. 283 (2015) 377 | DOI

[53] A Polishchuk, Moduli spaces of curves with effective r–spin structures, from: "Gromov–Witten theory of spin curves and orbifolds" (editors T J Jarvis, T Kimura, A Vaintrob), Contemp. Math. 403, Amer. Math. Soc. (2006) 1 | DOI

[54] A Polishchuk, A Vaintrob, Algebraic construction of Witten’s top Chern class, from: "Advances in algebraic geometry motivated by physics" (editor E Previato), Contemp. Math. 276, Amer. Math. Soc. (2001) 229 | DOI

[55] A Polishchuk, A Vaintrob, Matrix factorizations and cohomological field theories, J. Reine Angew. Math. 714 (2016) 1 | DOI

[56] B. Siebert, Gromov–Witten invariants in relative and singular cases, lecture (2001)

[57] J Wise, Obstruction theories and virtual fundamental classes, preprint (2011)

[58] J Wise, Moduli of morphisms of logarithmic schemes, Algebra Number Theory 10 (2016) 695 | DOI

[59] E Witten, Algebraic geometry associated with matrix models of two-dimensional gravity, from: "Topological methods in modern mathematics" (editors L R Goldberg, A V Phillips), Publish or Perish (1993) 235

Cité par Sources :