Instanton Floer homology of almost-rational plumbings
Geometry & topology, Tome 26 (2022) no. 5, pp. 2237-2294.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We show that if Y is the boundary of an almost-rational plumbing, then the framed instanton Floer homology I#(Y ) is isomorphic to the Heegaard Floer homology HF^(Y ; ). This class of 3–manifolds includes all Seifert fibered rational homology spheres with base orbifold S2 (we establish the isomorphism for the remaining Seifert fibered rational homology spheres — with base 2 — directly). Our proof utilizes lattice homology, and relies on a decomposition theorem for instanton Floer cobordism maps recently established by Baldwin and Sivek.

DOI : 10.2140/gt.2022.26.2237
Keywords: instanton Floer homology, Heegaard Floer homology, lattice homology, plumbings

Alfieri, Antonio 1 ; Baldwin, John A 2 ; Dai, Irving 3 ; Sivek, Steven 4

1 Department of Mathematics, University of British Columbia, Vancouver, BC, Canada
2 Department of Mathematics, Boston College, Chestnut Hill, MA, United States
3 Department of Mathematics, Stanford University, Stanford, CA, United States
4 Department of Mathematics, Imperial College London, London, United Kingdom, Max Planck Institute for Mathematics, Bonn, Germany
@article{GT_2022_26_5_a5,
     author = {Alfieri, Antonio and Baldwin, John A and Dai, Irving and Sivek, Steven},
     title = {Instanton {Floer} homology of almost-rational plumbings},
     journal = {Geometry & topology},
     pages = {2237--2294},
     publisher = {mathdoc},
     volume = {26},
     number = {5},
     year = {2022},
     doi = {10.2140/gt.2022.26.2237},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.2237/}
}
TY  - JOUR
AU  - Alfieri, Antonio
AU  - Baldwin, John A
AU  - Dai, Irving
AU  - Sivek, Steven
TI  - Instanton Floer homology of almost-rational plumbings
JO  - Geometry & topology
PY  - 2022
SP  - 2237
EP  - 2294
VL  - 26
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.2237/
DO  - 10.2140/gt.2022.26.2237
ID  - GT_2022_26_5_a5
ER  - 
%0 Journal Article
%A Alfieri, Antonio
%A Baldwin, John A
%A Dai, Irving
%A Sivek, Steven
%T Instanton Floer homology of almost-rational plumbings
%J Geometry & topology
%D 2022
%P 2237-2294
%V 26
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.2237/
%R 10.2140/gt.2022.26.2237
%F GT_2022_26_5_a5
Alfieri, Antonio; Baldwin, John A; Dai, Irving; Sivek, Steven. Instanton Floer homology of almost-rational plumbings. Geometry & topology, Tome 26 (2022) no. 5, pp. 2237-2294. doi : 10.2140/gt.2022.26.2237. http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.2237/

[1] J A Baldwin, S Sivek, Stein fillings and SU(2) representations, Geom. Topol. 22 (2018) 4307 | DOI

[2] J A Baldwin, S Sivek, Instantons and L–space surgeries, (2019)

[3] J A Baldwin, S Sivek, Framed instanton homology and concordance, J. Topol. 14 (2021) 1113 | DOI

[4] S Boyer, C M Gordon, L Watson, On L–spaces and left-orderable fundamental groups, Math. Ann. 356 (2013) 1213 | DOI

[5] S Boyer, D Rolfsen, B Wiest, Orderable 3–manifold groups, Ann. Inst. Fourier (Grenoble) 55 (2005) 243 | DOI

[6] P J Braam, S K Donaldson, Floer’s work on instanton homology, knots and surgery, from: "The Floer memorial volume" (editors H Hofer, C H Taubes, A Weinstein, E Zehnder), Progr. Math. 133, Birkhäuser (1995) 195 | DOI

[7] B A Burton, R Budney, W Pettersson, Others, Regina: software for low-dimensional topology (1999)

[8] W Chen, C Scaduto, Nilpotency in instanton homology, and the framed instanton homology of a surface times a circle, Adv. Math. 336 (2018) 377 | DOI

[9] M Culler, N M Dunfield, J R Weeks, SnapPy, a computer program for studying the topology of 3–manifolds

[10] S K Donaldson, Floer homology groups in Yang–Mills theory, 147, Cambridge Univ. Press (2002) | DOI

[11] N M Dunfield, A census of exceptional Dehn fillings, from: "Characters in low-dimensional topology" (editors O Collin, S Friedl, C Gordon, S Tillmann, L Watson), Contemp. Math. 760, Amer. Math. Soc. (2020) 143 | DOI

[12] J E Greene, A surgery triangle for lattice cohomology, Algebr. Geom. Topol. 13 (2013) 441 | DOI

[13] P B Kronheimer, T S Mrowka, Witten’s conjecture and property P, Geom. Topol. 8 (2004) 295 | DOI

[14] P Kronheimer, T Mrowka, Knots, sutures, and excision, J. Differential Geom. 84 (2010) 301

[15] P B Kronheimer, T S Mrowka, Khovanov homology is an unknot-detector, Publ. Math. Inst. Hautes Études Sci. 113 (2011) 97 | DOI

[16] P B Kronheimer, T S Mrowka, Knot homology groups from instantons, J. Topol. 4 (2011) 835 | DOI

[17] H B Laufer, On minimally elliptic singularities, Amer. J. Math. 99 (1977) 1257 | DOI

[18] T Lidman, J Pinzon-Caicedo, C Scaduto, Framed instanton homology of surgeries on L–space knots, preprint (2020)

[19] P Lisca, A I Stipsicz, Ozsváth–Szabó invariants and tight contact 3–manifolds, III, J. Symplectic Geom. 5 (2007) 357 | DOI

[20] A Némethi, On the Ozsváth–Szabó invariant of negative definite plumbed 3–manifolds, Geom. Topol. 9 (2005) 991 | DOI

[21] A Némethi, Lattice cohomology of normal surface singularities, Publ. Res. Inst. Math. Sci. 44 (2008) 507 | DOI

[22] W D Neumann, A calculus for plumbing applied to the topology of complex surface singularities and degenerating complex curves, Trans. Amer. Math. Soc. 268 (1981) 299 | DOI

[23] P Ozsváth, Z Szabó, On the Floer homology of plumbed three-manifolds, Geom. Topol. 7 (2003) 185 | DOI

[24] P Ozsváth, Z Szabó, Holomorphic triangles and invariants for smooth four-manifolds, Adv. Math. 202 (2006) 326 | DOI

[25] H M Pedersen, Splice diagram determining singularity links and universal abelian covers, Geom. Dedicata 150 (2011) 75 | DOI

[26] H M Pedersen, Rational homology spheres as universal abelian covers, Int. Math. Res. Not. 2015 (2015) 7826 | DOI

[27] C W Scaduto, Instantons and odd Khovanov homology, J. Topol. 8 (2015) 744 | DOI

[28] C Scaduto, M Stoffregen, Two-fold quasi-alternating links, Khovanov homology and instanton homology, Quantum Topol. 9 (2018) 167 | DOI

Cité par Sources :