Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We show that if is the boundary of an almost-rational plumbing, then the framed instanton Floer homology is isomorphic to the Heegaard Floer homology . This class of –manifolds includes all Seifert fibered rational homology spheres with base orbifold (we establish the isomorphism for the remaining Seifert fibered rational homology spheres — with base — directly). Our proof utilizes lattice homology, and relies on a decomposition theorem for instanton Floer cobordism maps recently established by Baldwin and Sivek.
Alfieri, Antonio 1 ; Baldwin, John A 2 ; Dai, Irving 3 ; Sivek, Steven 4
@article{GT_2022_26_5_a5, author = {Alfieri, Antonio and Baldwin, John A and Dai, Irving and Sivek, Steven}, title = {Instanton {Floer} homology of almost-rational plumbings}, journal = {Geometry & topology}, pages = {2237--2294}, publisher = {mathdoc}, volume = {26}, number = {5}, year = {2022}, doi = {10.2140/gt.2022.26.2237}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.2237/} }
TY - JOUR AU - Alfieri, Antonio AU - Baldwin, John A AU - Dai, Irving AU - Sivek, Steven TI - Instanton Floer homology of almost-rational plumbings JO - Geometry & topology PY - 2022 SP - 2237 EP - 2294 VL - 26 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.2237/ DO - 10.2140/gt.2022.26.2237 ID - GT_2022_26_5_a5 ER -
%0 Journal Article %A Alfieri, Antonio %A Baldwin, John A %A Dai, Irving %A Sivek, Steven %T Instanton Floer homology of almost-rational plumbings %J Geometry & topology %D 2022 %P 2237-2294 %V 26 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.2237/ %R 10.2140/gt.2022.26.2237 %F GT_2022_26_5_a5
Alfieri, Antonio; Baldwin, John A; Dai, Irving; Sivek, Steven. Instanton Floer homology of almost-rational plumbings. Geometry & topology, Tome 26 (2022) no. 5, pp. 2237-2294. doi : 10.2140/gt.2022.26.2237. http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.2237/
[1] Stein fillings and SU(2) representations, Geom. Topol. 22 (2018) 4307 | DOI
, ,[2] Instantons and L–space surgeries, (2019)
, ,[3] Framed instanton homology and concordance, J. Topol. 14 (2021) 1113 | DOI
, ,[4] On L–spaces and left-orderable fundamental groups, Math. Ann. 356 (2013) 1213 | DOI
, , ,[5] Orderable 3–manifold groups, Ann. Inst. Fourier (Grenoble) 55 (2005) 243 | DOI
, , ,[6] Floer’s work on instanton homology, knots and surgery, from: "The Floer memorial volume" (editors H Hofer, C H Taubes, A Weinstein, E Zehnder), Progr. Math. 133, Birkhäuser (1995) 195 | DOI
, ,[7] Regina: software for low-dimensional topology (1999)
, , , ,[8] Nilpotency in instanton homology, and the framed instanton homology of a surface times a circle, Adv. Math. 336 (2018) 377 | DOI
, ,[9] SnapPy, a computer program for studying the topology of 3–manifolds
, , ,[10] Floer homology groups in Yang–Mills theory, 147, Cambridge Univ. Press (2002) | DOI
,[11] A census of exceptional Dehn fillings, from: "Characters in low-dimensional topology" (editors O Collin, S Friedl, C Gordon, S Tillmann, L Watson), Contemp. Math. 760, Amer. Math. Soc. (2020) 143 | DOI
,[12] A surgery triangle for lattice cohomology, Algebr. Geom. Topol. 13 (2013) 441 | DOI
,[13] Witten’s conjecture and property P, Geom. Topol. 8 (2004) 295 | DOI
, ,[14] Knots, sutures, and excision, J. Differential Geom. 84 (2010) 301
, ,[15] Khovanov homology is an unknot-detector, Publ. Math. Inst. Hautes Études Sci. 113 (2011) 97 | DOI
, ,[16] Knot homology groups from instantons, J. Topol. 4 (2011) 835 | DOI
, ,[17] On minimally elliptic singularities, Amer. J. Math. 99 (1977) 1257 | DOI
,[18] Framed instanton homology of surgeries on L–space knots, preprint (2020)
, , ,[19] Ozsváth–Szabó invariants and tight contact 3–manifolds, III, J. Symplectic Geom. 5 (2007) 357 | DOI
, ,[20] On the Ozsváth–Szabó invariant of negative definite plumbed 3–manifolds, Geom. Topol. 9 (2005) 991 | DOI
,[21] Lattice cohomology of normal surface singularities, Publ. Res. Inst. Math. Sci. 44 (2008) 507 | DOI
,[22] A calculus for plumbing applied to the topology of complex surface singularities and degenerating complex curves, Trans. Amer. Math. Soc. 268 (1981) 299 | DOI
,[23] On the Floer homology of plumbed three-manifolds, Geom. Topol. 7 (2003) 185 | DOI
, ,[24] Holomorphic triangles and invariants for smooth four-manifolds, Adv. Math. 202 (2006) 326 | DOI
, ,[25] Splice diagram determining singularity links and universal abelian covers, Geom. Dedicata 150 (2011) 75 | DOI
,[26] Rational homology spheres as universal abelian covers, Int. Math. Res. Not. 2015 (2015) 7826 | DOI
,[27] Instantons and odd Khovanov homology, J. Topol. 8 (2015) 744 | DOI
,[28] Two-fold quasi-alternating links, Khovanov homology and instanton homology, Quantum Topol. 9 (2018) 167 | DOI
, ,Cité par Sources :