The higher-dimensional tropical vertex
Geometry & topology, Tome 26 (2022) no. 5, pp. 2135-2235.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We study log Calabi–Yau varieties obtained as a blow-up of a toric variety along hypersurfaces in its toric boundary. Mirrors to such varieties are constructed by Gross and Siebert from a canonical scattering diagram built by using punctured Gromov–Witten invariants of Abramovich, Chen, Gross and Siebert. We show that there is a piecewise-linear isomorphism between the canonical scattering diagram and a scattering diagram defined algorithmically, following a higher-dimensional generalization of the Kontsevich–Soibelman construction. We deduce that the punctured Gromov–Witten invariants of the log Calabi–Yau variety can be captured from this algorithmic construction. This generalizes previous results of Gross, Pandharipande and Siebert on “the tropical vertex” to higher dimensions. As a particular example, we compute these invariants for a nontoric blow-up of the three-dimensional projective space along two lines.

DOI : 10.2140/gt.2022.26.2135
Keywords: mirror symmetry, tropical geometry, Gromov–Witten theory

Argüz, Hülya 1 ; Gross, Mark 2

1 Université de Versailles Saint-Quentin-en-Yvelines, Versailles, France, Department of Mathematics, University of Georgia, Athens, GA, United States
2 DPMMS, University of Cambridge, Cambridge, United Kingdom
@article{GT_2022_26_5_a4,
     author = {Arg\"uz, H\"ulya and Gross, Mark},
     title = {The higher-dimensional tropical vertex},
     journal = {Geometry & topology},
     pages = {2135--2235},
     publisher = {mathdoc},
     volume = {26},
     number = {5},
     year = {2022},
     doi = {10.2140/gt.2022.26.2135},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.2135/}
}
TY  - JOUR
AU  - Argüz, Hülya
AU  - Gross, Mark
TI  - The higher-dimensional tropical vertex
JO  - Geometry & topology
PY  - 2022
SP  - 2135
EP  - 2235
VL  - 26
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.2135/
DO  - 10.2140/gt.2022.26.2135
ID  - GT_2022_26_5_a4
ER  - 
%0 Journal Article
%A Argüz, Hülya
%A Gross, Mark
%T The higher-dimensional tropical vertex
%J Geometry & topology
%D 2022
%P 2135-2235
%V 26
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.2135/
%R 10.2140/gt.2022.26.2135
%F GT_2022_26_5_a4
Argüz, Hülya; Gross, Mark. The higher-dimensional tropical vertex. Geometry & topology, Tome 26 (2022) no. 5, pp. 2135-2235. doi : 10.2140/gt.2022.26.2135. http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.2135/

[1] D Abramovich, Q Chen, Stable logarithmic maps to Deligne–Faltings pairs, II, Asian J. Math. 18 (2014) 465 | DOI

[2] D Abramovich, Q Chen, M Gross, B Siebert, Decomposition of degenerate Gromov–Witten invariants, Compos. Math. 156 (2020) 2020 | DOI

[3] D Abramovich, Q Chen, M Gross, B Siebert, Punctured logarithmic maps, preprint (2020)

[4] D Abramovich, Q Chen, S Marcus, M Ulirsch, J Wise, Skeletons and fans of logarithmic structures, from: "Nonarchimedean and tropical geometry" (editors M Baker, S Payne), Springer (2016) 287 | DOI

[5] D Abramovich, Q Chen, S Marcus, J Wise, Boundedness of the space of stable logarithmic maps, J. Eur. Math. Soc. 19 (2017) 2783 | DOI

[6] H Argüz, Equations of mirrors to log Calabi–Yau pairs via the heart of canonical wall structures, preprint (2021)

[7] H Argüz, P Bousseau, The flow tree formula for Donaldson–Thomas invariants of quivers with potentials, preprint (2021)

[8] H Argüz, T Prince, Real Lagrangians in Calabi–Yau threefolds, Proc. Lond. Math. Soc. 121 (2020) 287 | DOI

[9] P Bousseau, The quantum tropical vertex, Geom. Topol. 24 (2020) 1297 | DOI

[10] M W Cheung, T Mandel, Donaldson–Thomas invariants from tropical disks, Selecta Math. 26 (2020) | DOI

[11] R Donagi, S Katz, M Wijnholt, Weak coupling, degeneration and log Calabi–Yau spaces, Pure Appl. Math. Q. 9 (2013) 655 | DOI

[12] K Fukaya, Multivalued Morse theory, asymptotic analysis and mirror symmetry, from: "Graphs and patterns in mathematics and theoretical physics" (editors M Lyubich, L Takhtajan), Proc. Sympos. Pure Math. 73, Amer. Math. Soc. (2005) 205 | DOI

[13] W M Goldman, Geometric structures on manifolds, preprint (2021)

[14] W Goldman, M W Hirsch, The radiance obstruction and parallel forms on affine manifolds, Trans. Amer. Math. Soc. 286 (1984) 629 | DOI

[15] M Gross, P Hacking, S Keel, Mirror symmetry for log Calabi–Yau surfaces, I, Publ. Math. Inst. Hautes Études Sci. 122 (2015) 65 | DOI

[16] M Gross, P Hacking, S Keel, M Kontsevich, Canonical bases for cluster algebras, J. Amer. Math. Soc. 31 (2018) 497 | DOI

[17] M Gross, P Hacking, B Siebert, Theta functions on varieties with effective anti-canonical class, 1367, Amer. Math. Soc. (2022) | DOI

[18] M Gross, R Pandharipande, B Siebert, The tropical vertex, Duke Math. J. 153 (2010) 297 | DOI

[19] M Gross, B Siebert, From real affine geometry to complex geometry, Ann. of Math. 174 (2011) 1301 | DOI

[20] M Gross, B Siebert, Logarithmic Gromov–Witten invariants, J. Amer. Math. Soc. 26 (2013) 451 | DOI

[21] M Gross, B Siebert, Local mirror symmetry in the tropics, from: "Proceedings of the International Congress of Mathematicians, II" (editors S Y Jang, Y R Kim, D W Lee, I Ye), Kyung Moon Sa (2014) 723

[22] M Gross, B Siebert, Intrinsic mirror symmetry and punctured Gromov–Witten invariants, from: "Algebraic geometry" (editors T de Fernex, B Hassett, M Mustaţă, M Olsson, M Popa, R Thomas), Proc. Sympos. Pure Math. 97, Amer. Math. Soc. (2018) 199 | DOI

[23] M Gross, B Siebert, Intrinsic mirror symmetry, preprint (2019)

[24] M Gross, B Siebert, The canonical wall structure and intrinsic mirror symmetry, Invent. Math. 229 (2022) 1101 | DOI

[25] E N Ionel, T H Parker, Relative Gromov–Witten invariants, Ann. of Math. 157 (2003) 45 | DOI

[26] S Keel, T Y Yu, The Frobenius structure theorem for affine log Calabi–Yau varieties containing a torus, preprint (2019)

[27] J Kollár, C Xu, The dual complex of Calabi–Yau pairs, Invent. Math. 205 (2016) 527 | DOI

[28] M Kontsevich, Y Soibelman, Affine structures and non-archimedean analytic spaces, from: "The unity of mathematics" (editors P Etingof, V Retakh, I M Singer), Progr. Math. 244, Birkhäuser (2006) 321 | DOI

[29] A M Li, Y Ruan, Symplectic surgery and Gromov–Witten invariants of Calabi–Yau 3–folds, Invent. Math. 145 (2001) 151 | DOI

[30] J Li, Stable morphisms to singular schemes and relative stable morphisms, J. Differential Geom. 57 (2001) 509

[31] T Mandel, Scattering diagrams, theta functions, and refined tropical curve counts, J. Lond. Math. Soc. 104 (2021) 2299 | DOI

[32] T Mandel, Theta bases and log Gromov–Witten invariants of cluster varieties, Trans. Amer. Math. Soc. 374 (2021) 5433 | DOI

[33] C Manolache, Virtual pull-backs, J. Algebraic Geom. 21 (2012) 201 | DOI

[34] J Nicaise, C Xu, T Y Yu, The non-archimedean SYZ fibration, Compos. Math. 155 (2019) 953 | DOI

[35] T Oda, Convex bodies and algebraic geometry: an introduction to the theory of toric varieties, 15, Springer (1988)

[36] A Ogus, Lectures on logarithmic algebraic geometry, 178, Cambridge Univ. Press (2018) | DOI

[37] M C Olsson, Logarithmic geometry and algebraic stacks, Ann. Sci. École Norm. Sup. 36 (2003) 747 | DOI

[38] B Parker, Tropical enumeration of curves in blowups of the projective plane, preprint (2014)

[39] J Pascaleff, On the symplectic cohomology of log Calabi–Yau surfaces, Geom. Topol. 23 (2019) 2701 | DOI

[40] A Strominger, S T Yau, E Zaslow, Mirror symmetry is T–duality, Nuclear Phys. B 479 (1996) 243 | DOI

[41] N Takahashi, Log mirror symmetry and local mirror symmetry, Comm. Math. Phys. 220 (2001) 293 | DOI

[42] T Y Yu, Enumeration of holomorphic cylinders in log Calabi–Yau surfaces, I, Math. Ann. 366 (2016) 1649 | DOI

Cité par Sources :