The spheres of Sol
Geometry & topology, Tome 26 (2022) no. 5, pp. 2103-2134.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let Sol be the 3–dimensional solvable Lie group whose underlying space is 3 and whose left-invariant Riemannian metric is given by

Let E : 3 Sol be the Riemannian exponential map. Given V = (x,y,z) 3, let γV = {E(tV )t [0,1]} be the corresponding geodesic segment. Let AGM stand for the arithmetic–geometric mean. We prove that γV is a distance-minimizing segment in Sol if and only if

We use this inequality to precisely characterize the cut locus in Sol, prove that the metric spheres in Sol are topological spheres, and almost exactly characterize their singular sets.

DOI : 10.2140/gt.2022.26.2103
Keywords: Sol, spheres, geodesics, cut locus

Coiculescu, Matei P 1 ; Schwartz, Richard Evan 2

1 Department of Mathematics, Princeton University, Princeton, NJ, United States
2 Department of Mathematics, Brown University, Providence, RI, United States
@article{GT_2022_26_5_a3,
     author = {Coiculescu, Matei P and Schwartz, Richard Evan},
     title = {The spheres of {Sol}},
     journal = {Geometry & topology},
     pages = {2103--2134},
     publisher = {mathdoc},
     volume = {26},
     number = {5},
     year = {2022},
     doi = {10.2140/gt.2022.26.2103},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.2103/}
}
TY  - JOUR
AU  - Coiculescu, Matei P
AU  - Schwartz, Richard Evan
TI  - The spheres of Sol
JO  - Geometry & topology
PY  - 2022
SP  - 2103
EP  - 2134
VL  - 26
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.2103/
DO  - 10.2140/gt.2022.26.2103
ID  - GT_2022_26_5_a3
ER  - 
%0 Journal Article
%A Coiculescu, Matei P
%A Schwartz, Richard Evan
%T The spheres of Sol
%J Geometry & topology
%D 2022
%P 2103-2134
%V 26
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.2103/
%R 10.2140/gt.2022.26.2103
%F GT_2022_26_5_a3
Coiculescu, Matei P; Schwartz, Richard Evan. The spheres of Sol. Geometry & topology, Tome 26 (2022) no. 5, pp. 2103-2134. doi : 10.2140/gt.2022.26.2103. http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.2103/

[1] M Abramowitz, I A Stegun, editors, Handbook of mathematical functions with formulas, graphs, and mathematical tables, 55, US Government Printing Office (1964)

[2] V Arnold, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits, Ann. Inst. Fourier (Grenoble) 16 (1966) 319

[3] V I Arnold, B A Khesin, Topological methods in hydrodynamics, 125, Springer (1998) | DOI

[4] A Bölcskei, B Szilágyi, Frenet formulas and geodesics in Sol geometry, Beiträge Algebra Geom. 48 (2007) 411

[5] A V Bolsinov, I A Taimanov, Integrable geodesic flows with positive topological entropy, Invent. Math. 140 (2000) 639 | DOI

[6] J M Borwein, P B Borwein, Pi and the AGM, Wiley (1987)

[7] N Brady, Sol geometry groups are not asynchronously automatic, Proc. Lond. Math. Soc. 83 (2001) 93 | DOI

[8] R Coulon, E A Matsumoto, H Segerman, S Trettel, Non-Euclidean virtual reality, IV: Sol, preprint (2020)

[9] A Eskin, D Fisher, K Whyte, Coarse differentiation of quasi-isometries, II : Rigidity for Sol and lamplighter groups, Ann. of Math. (2) 177 (2013) 869 | DOI

[10] M A Grayson, Geometry and growth in three dimensions, PhD thesis, Princeton University (1983)

[11] S Kim, The ideal boundary of the Sol group, J. Math. Kyoto Univ. 45 (2005) 257 | DOI

[12] S Kobayashi, K Nomizu, Foundations of differential geometry, II, 15, Interscience (1969)

[13] R López, M I Munteanu, Surfaces with constant mean curvature in Sol geometry, Differential Geom. Appl. 29 (2011) | DOI

[14] R E Schwartz, Java program for Sol (2019)

[15] R E Schwartz, On area growth in Sol, preprint (2020)

[16] W Thurston, Geometry and topology of three-manifolds, lecture notes (1980)

[17] M Troyanov, L’horizon de SOL, Exposition. Math. 16 (1998) 441

Cité par Sources :