Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Let Sol be the –dimensional solvable Lie group whose underlying space is and whose left-invariant Riemannian metric is given by
Let be the Riemannian exponential map. Given , let be the corresponding geodesic segment. Let AGM stand for the arithmetic–geometric mean. We prove that is a distance-minimizing segment in Sol if and only if
We use this inequality to precisely characterize the cut locus in Sol, prove that the metric spheres in Sol are topological spheres, and almost exactly characterize their singular sets.
Coiculescu, Matei P 1 ; Schwartz, Richard Evan 2
@article{GT_2022_26_5_a3, author = {Coiculescu, Matei P and Schwartz, Richard Evan}, title = {The spheres of {Sol}}, journal = {Geometry & topology}, pages = {2103--2134}, publisher = {mathdoc}, volume = {26}, number = {5}, year = {2022}, doi = {10.2140/gt.2022.26.2103}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.2103/} }
Coiculescu, Matei P; Schwartz, Richard Evan. The spheres of Sol. Geometry & topology, Tome 26 (2022) no. 5, pp. 2103-2134. doi : 10.2140/gt.2022.26.2103. http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.2103/
[1] Handbook of mathematical functions with formulas, graphs, and mathematical tables, 55, US Government Printing Office (1964)
, , editors,[2] Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits, Ann. Inst. Fourier (Grenoble) 16 (1966) 319
,[3] Topological methods in hydrodynamics, 125, Springer (1998) | DOI
, ,[4] Frenet formulas and geodesics in Sol geometry, Beiträge Algebra Geom. 48 (2007) 411
, ,[5] Integrable geodesic flows with positive topological entropy, Invent. Math. 140 (2000) 639 | DOI
, ,[6] Pi and the AGM, Wiley (1987)
, ,[7] Sol geometry groups are not asynchronously automatic, Proc. Lond. Math. Soc. 83 (2001) 93 | DOI
,[8] Non-Euclidean virtual reality, IV: Sol, preprint (2020)
, , , ,[9] Coarse differentiation of quasi-isometries, II : Rigidity for Sol and lamplighter groups, Ann. of Math. (2) 177 (2013) 869 | DOI
, , ,[10] Geometry and growth in three dimensions, PhD thesis, Princeton University (1983)
,[11] The ideal boundary of the Sol group, J. Math. Kyoto Univ. 45 (2005) 257 | DOI
,[12] Foundations of differential geometry, II, 15, Interscience (1969)
, ,[13] Surfaces with constant mean curvature in Sol geometry, Differential Geom. Appl. 29 (2011) | DOI
, ,[14] Java program for Sol (2019)
,[15] On area growth in Sol, preprint (2020)
,[16] Geometry and topology of three-manifolds, lecture notes (1980)
,[17] L’horizon de SOL, Exposition. Math. 16 (1998) 441
,Cité par Sources :