Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We prove that –space knots do not have essential Conway spheres with the technology of peculiar modules, a Floer-theoretic invariant for tangles.
Lidman, Tye 1 ; Moore, Allison H 2 ; Zibrowius, Claudius 3
@article{GT_2022_26_5_a2, author = {Lidman, Tye and Moore, Allison H and Zibrowius, Claudius}, title = {L{\textendash}space knots have no essential {Conway} spheres}, journal = {Geometry & topology}, pages = {2065--2102}, publisher = {mathdoc}, volume = {26}, number = {5}, year = {2022}, doi = {10.2140/gt.2022.26.2065}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.2065/} }
TY - JOUR AU - Lidman, Tye AU - Moore, Allison H AU - Zibrowius, Claudius TI - L–space knots have no essential Conway spheres JO - Geometry & topology PY - 2022 SP - 2065 EP - 2102 VL - 26 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.2065/ DO - 10.2140/gt.2022.26.2065 ID - GT_2022_26_5_a2 ER -
%0 Journal Article %A Lidman, Tye %A Moore, Allison H %A Zibrowius, Claudius %T L–space knots have no essential Conway spheres %J Geometry & topology %D 2022 %P 2065-2102 %V 26 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.2065/ %R 10.2140/gt.2022.26.2065 %F GT_2022_26_5_a2
Lidman, Tye; Moore, Allison H; Zibrowius, Claudius. L–space knots have no essential Conway spheres. Geometry & topology, Tome 26 (2022) no. 5, pp. 2065-2102. doi : 10.2140/gt.2022.26.2065. http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.2065/
[1] Montesinos knots, Hopf plumbings, and L–space surgeries, J. Math. Soc. Japan 70 (2018) 95 | DOI
, ,[2] Seifert vs. slice genera of knots in twist families and a characterization of braid axes, Proc. Lond. Math. Soc. 119 (2019) 1493 | DOI
, ,[3] A note on the knot Floer homology of fibered knots, Algebr. Geom. Topol. 18 (2018) 3669 | DOI
, ,[4] An enumeration of knots and links, and some of their algebraic properties, from: "Computational problems in abstract algebra" (editor J Leech), Pergamon (1970) 329 | DOI
,[5] Essential laminations in 3–manifolds, Ann. of Math. 130 (1989) 41 | DOI
, ,[6] Knot Floer homology detects genus-one fibred knots, Amer. J. Math. 130 (2008) 1151 | DOI
,[7] Bordered Floer homology for manifolds with torus boundary via immersed curves, preprint (2016)
, , ,[8] Tangle decompositions of satellite knots, Rev. Mat. Complut. 12 (1999) 417 | DOI
, , ,[9] On the geography and botany of knot Floer homology, Selecta Math. 24 (2018) 997 | DOI
, ,[10] Satellite knots and L–space surgeries, Bull. Lond. Math. Soc. 48 (2016) 771 | DOI
,[11] Holomorphic discs and sutured manifolds, Algebr. Geom. Topol. 6 (2006) 1429 | DOI
,[12] Floer homology and surface decompositions, Geom. Topol. 12 (2008) 299 | DOI
,[13] Thin links and Conway spheres, preprint (2021)
, , ,[14] The reduced knot Floer complex, Topology Appl. 194 (2015) 171 | DOI
,[15] Monopoles and lens space surgeries, Ann. of Math. 165 (2007) 457 | DOI
, , , ,[16] Pretzel knots with L–space surgeries, Michigan Math. J. 65 (2016) 105
, ,[17] An introduction to knot Floer homology, from: "Physics and mathematics of link homology" (editors S Gukov, M Khovanov, J Walcher), Contemp. Math. 680, Amer. Math. Soc. (2016) 99 | DOI
,[18] Knot Floer homology detects fibred knots, Invent. Math. 170 (2007) 577 | DOI
,[19] Concordance homomorphisms from knot Floer homology, Adv. Math. 315 (2017) 366 | DOI
, , ,[20] Knot Floer homology and the four-ball genus, Geom. Topol. 7 (2003) 615 | DOI
, ,[21] Holomorphic disks and genus bounds, Geom. Topol. 8 (2004) 311 | DOI
, ,[22] Holomorphic disks and knot invariants, Adv. Math. 186 (2004) 58 | DOI
, ,[23] On knot Floer homology and lens space surgeries, Topology 44 (2005) 1281 | DOI
, ,[24] Holomorphic disks, link invariants and the multi-variable Alexander polynomial, Algebr. Geom. Topol. 8 (2008) 615 | DOI
, ,[25] Knot Floer homology and rational surgeries, Algebr. Geom. Topol. 11 (2011) 1 | DOI
, ,[26] Hyperbolic knots and cyclic branched covers, Publ. Mat. 49 (2005) 257 | DOI
,[27] Dehn surgery on arborescent knots, J. Differential Geom. 43 (1996) 171
,[28] Bordered Floer homology for sutured manifolds, preprint (2009)
,[29] Kauffman states and Heegaard diagrams for tangles, Algebr. Geom. Topol. 19 (2019) 2233 | DOI
,[30] On symmetries of peculiar modules ; or, δ–graded link Floer homology is mutation invariant, (2019)
,[31] Peculiar modules for 4–ended tangles, J. Topol. 13 (2020) 77 | DOI
,Cité par Sources :