L–space knots have no essential Conway spheres
Geometry & topology, Tome 26 (2022) no. 5, pp. 2065-2102.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove that L–space knots do not have essential Conway spheres with the technology of peculiar modules, a Floer-theoretic invariant for tangles.

DOI : 10.2140/gt.2022.26.2065
Keywords: $L$–space knots, Conway spheres

Lidman, Tye 1 ; Moore, Allison H 2 ; Zibrowius, Claudius 3

1 Department of Mathematics, North Carolina State University, Raleigh, NC, United States
2 Department of Mathematics and Applied Mathematics, Virginia Commonwealth University, Richmond, VA, United States
3 Fakultät für Mathematik, Universität Regensburg, Regensburg, Germany
@article{GT_2022_26_5_a2,
     author = {Lidman, Tye and Moore, Allison H and Zibrowius, Claudius},
     title = {L{\textendash}space knots have no essential {Conway} spheres},
     journal = {Geometry & topology},
     pages = {2065--2102},
     publisher = {mathdoc},
     volume = {26},
     number = {5},
     year = {2022},
     doi = {10.2140/gt.2022.26.2065},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.2065/}
}
TY  - JOUR
AU  - Lidman, Tye
AU  - Moore, Allison H
AU  - Zibrowius, Claudius
TI  - L–space knots have no essential Conway spheres
JO  - Geometry & topology
PY  - 2022
SP  - 2065
EP  - 2102
VL  - 26
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.2065/
DO  - 10.2140/gt.2022.26.2065
ID  - GT_2022_26_5_a2
ER  - 
%0 Journal Article
%A Lidman, Tye
%A Moore, Allison H
%A Zibrowius, Claudius
%T L–space knots have no essential Conway spheres
%J Geometry & topology
%D 2022
%P 2065-2102
%V 26
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.2065/
%R 10.2140/gt.2022.26.2065
%F GT_2022_26_5_a2
Lidman, Tye; Moore, Allison H; Zibrowius, Claudius. L–space knots have no essential Conway spheres. Geometry & topology, Tome 26 (2022) no. 5, pp. 2065-2102. doi : 10.2140/gt.2022.26.2065. http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.2065/

[1] K L Baker, A H Moore, Montesinos knots, Hopf plumbings, and L–space surgeries, J. Math. Soc. Japan 70 (2018) 95 | DOI

[2] K L Baker, K Motegi, Seifert vs. slice genera of knots in twist families and a characterization of braid axes, Proc. Lond. Math. Soc. 119 (2019) 1493 | DOI

[3] J Baldwin, D S Vela-Vick, A note on the knot Floer homology of fibered knots, Algebr. Geom. Topol. 18 (2018) 3669 | DOI

[4] J H Conway, An enumeration of knots and links, and some of their algebraic properties, from: "Computational problems in abstract algebra" (editor J Leech), Pergamon (1970) 329 | DOI

[5] D Gabai, U Oertel, Essential laminations in 3–manifolds, Ann. of Math. 130 (1989) 41 | DOI

[6] P Ghiggini, Knot Floer homology detects genus-one fibred knots, Amer. J. Math. 130 (2008) 1151 | DOI

[7] J Hanselman, J Rasmussen, L Watson, Bordered Floer homology for manifolds with torus boundary via immersed curves, preprint (2016)

[8] C Hayashi, H Matsuda, M Ozawa, Tangle decompositions of satellite knots, Rev. Mat. Complut. 12 (1999) 417 | DOI

[9] M Hedden, L Watson, On the geography and botany of knot Floer homology, Selecta Math. 24 (2018) 997 | DOI

[10] J Hom, Satellite knots and L–space surgeries, Bull. Lond. Math. Soc. 48 (2016) 771 | DOI

[11] A Juhász, Holomorphic discs and sutured manifolds, Algebr. Geom. Topol. 6 (2006) 1429 | DOI

[12] A Juhász, Floer homology and surface decompositions, Geom. Topol. 12 (2008) 299 | DOI

[13] A Kotelskiy, L Watson, C Zibrowius, Thin links and Conway spheres, preprint (2021)

[14] D Krcatovich, The reduced knot Floer complex, Topology Appl. 194 (2015) 171 | DOI

[15] P Kronheimer, T Mrowka, P Ozsváth, Z Szabó, Monopoles and lens space surgeries, Ann. of Math. 165 (2007) 457 | DOI

[16] T Lidman, A H Moore, Pretzel knots with L–space surgeries, Michigan Math. J. 65 (2016) 105

[17] C Manolescu, An introduction to knot Floer homology, from: "Physics and mathematics of link homology" (editors S Gukov, M Khovanov, J Walcher), Contemp. Math. 680, Amer. Math. Soc. (2016) 99 | DOI

[18] Y Ni, Knot Floer homology detects fibred knots, Invent. Math. 170 (2007) 577 | DOI

[19] P S Ozsváth, A I Stipsicz, Z Szabó, Concordance homomorphisms from knot Floer homology, Adv. Math. 315 (2017) 366 | DOI

[20] P Ozsváth, Z Szabó, Knot Floer homology and the four-ball genus, Geom. Topol. 7 (2003) 615 | DOI

[21] P Ozsváth, Z Szabó, Holomorphic disks and genus bounds, Geom. Topol. 8 (2004) 311 | DOI

[22] P Ozsváth, Z Szabó, Holomorphic disks and knot invariants, Adv. Math. 186 (2004) 58 | DOI

[23] P Ozsváth, Z Szabó, On knot Floer homology and lens space surgeries, Topology 44 (2005) 1281 | DOI

[24] P Ozsváth, Z Szabó, Holomorphic disks, link invariants and the multi-variable Alexander polynomial, Algebr. Geom. Topol. 8 (2008) 615 | DOI

[25] P S Ozsváth, Z Szabó, Knot Floer homology and rational surgeries, Algebr. Geom. Topol. 11 (2011) 1 | DOI

[26] L Paoluzzi, Hyperbolic knots and cyclic branched covers, Publ. Mat. 49 (2005) 257 | DOI

[27] Y Q Wu, Dehn surgery on arborescent knots, J. Differential Geom. 43 (1996) 171

[28] R Zarev, Bordered Floer homology for sutured manifolds, preprint (2009)

[29] C B Zibrowius, Kauffman states and Heegaard diagrams for tangles, Algebr. Geom. Topol. 19 (2019) 2233 | DOI

[30] C Zibrowius, On symmetries of peculiar modules ; or, δ–graded link Floer homology is mutation invariant, (2019)

[31] C Zibrowius, Peculiar modules for 4–ended tangles, J. Topol. 13 (2020) 77 | DOI

Cité par Sources :