Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Using a modified foam evaluation, we give a categorification of the Alexander polynomial of a knot. We also give a purely algebraic version of this knot homology which makes it appear as the infinite page of a spectral sequence starting at the reduced triply graded link homology of Khovanov and Rozansky.
Robert, Louis-Hadrien 1 ; Wagner, Emmanuel 2
@article{GT_2022_26_5_a1, author = {Robert, Louis-Hadrien and Wagner, Emmanuel}, title = {A quantum categorification of the {Alexander} polynomial}, journal = {Geometry & topology}, pages = {1985--2064}, publisher = {mathdoc}, volume = {26}, number = {5}, year = {2022}, doi = {10.2140/gt.2022.26.1985}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.1985/} }
TY - JOUR AU - Robert, Louis-Hadrien AU - Wagner, Emmanuel TI - A quantum categorification of the Alexander polynomial JO - Geometry & topology PY - 2022 SP - 1985 EP - 2064 VL - 26 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.1985/ DO - 10.2140/gt.2022.26.1985 ID - GT_2022_26_5_a1 ER -
Robert, Louis-Hadrien; Wagner, Emmanuel. A quantum categorification of the Alexander polynomial. Geometry & topology, Tome 26 (2022) no. 5, pp. 1985-2064. doi : 10.2140/gt.2022.26.1985. http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.1985/
[1] Khovanov’s homology for tangles and cobordisms, Geom. Topol. 9 (2005) 1443 | DOI
,[2] Topological quantum field theories derived from the Kauffman bracket, Topology 34 (1995) 883 | DOI
, , , ,[3] Remarks on coloured triply graded link invariants, Algebr. Geom. Topol. 17 (2017) 3811 | DOI
,[4] An enumeration of knots and links, and some of their algebraic properties, from: "Computational problems in abstract algebra" (editor J Leech), Pergamon (1970) 329 | DOI
,[5] A categorification of the HOMFLY-PT polynomial with a spectral sequence to knot Floer homology, preprint (2017)
,[6] Knot Floer homology and Khovanov–Rozansky homology for singular links, Algebr. Geom. Topol. 18 (2018) 3839 | DOI
,[7] The superpolynomial for knot homologies, Exp. Math. 15 (2006) 129 | DOI
, , ,[8] Functoriality of colored link homologies, Proc. Lond. Math. Soc. 117 (2018) 996 | DOI
, , ,[9] Quantum gl1|1 and tangle Floer homology, Adv. Math. 350 (2019) 130 | DOI
, , ,[10] A new polynomial invariant of knots and links, Bull. Amer. Math. Soc. 12 (1985) 239 | DOI
, , , , , ,[11] Multivariable link invariants arising from sl(2|1) and the Alexander polynomial, J. Pure Appl. Algebra 210 (2007) 283 | DOI
, ,[12] Invariance and the knot Floer cube of resolutions, Quantum Topol. 7 (2016) 107 | DOI
,[13] Braid groups, 247, Springer (2008) | DOI
, ,[14] Free fermions and the Alexander–Conway polynomial, Comm. Math. Phys. 141 (1991) 293 | DOI
, ,[15] Link polynomials and a graphical calculus, J. Knot Theory Ramifications 1 (1992) 59 | DOI
, ,[16] A categorification of the Jones polynomial, Duke Math. J. 101 (2000) 359 | DOI
,[17] sl(3) link homology, Algebr. Geom. Topol. 4 (2004) 1045 | DOI
,[18] Triply-graded link homology and Hochschild homology of Soergel bimodules, Int. J. Math. 18 (2007) 869 | DOI
,[19] Foam evaluation and Kronheimer–Mrowka theories, Adv. Math. 376 (2021) | DOI
, ,[20] Matrix factorizations and link homology, II, Geom. Topol. 12 (2008) 1387 | DOI
, ,[21] Knots, sutures, and excision, J. Differential Geom. 84 (2010) 301
, ,[22] sl(N)–link homology (N ≥ 4) using foams and the Kapustin–Li formula, Geom. Topol. 13 (2009) 1075 | DOI
, , ,[23] An untwisted cube of resolutions for knot Floer homology, Quantum Topol. 5 (2014) 185 | DOI
,[24] The HOMFLY polynomial of the decorated Hopf link, J. Knot Theory Ramifications 12 (2003) 395 | DOI
, ,[25] HOMFLY polynomial via an invariant of colored plane graphs, Enseign. Math. 44 (1998) 325
, , ,[26] Holomorphic disks and knot invariants, Adv. Math. 186 (2004) 58 | DOI
, ,[27] A cube of resolutions for knot Floer homology, J. Topol. 2 (2009) 865 | DOI
, ,[28] Combinatorial tangle Floer homology, Geom. Topol. 20 (2016) 3219 | DOI
, ,[29] Invariants of links of Conway type, Kobe J. Math. 4 (1988) 115
, ,[30] The sln foam 2–category : a combinatorial formulation of Khovanov–Rozansky homology via categorical skew Howe duality, Adv. Math. 302 (2016) 1251 | DOI
, ,[31] Sutured annular Khovanov–Rozansky homology, Trans. Amer. Math. Soc. 370 (2018) 1285 | DOI
, ,[32] Annular evaluation and link homology, preprint (2018)
, , ,[33] Floer homology and knot complements, PhD thesis, Harvard University (2003)
,[34] Some differentials on Khovanov–Rozansky homology, Geom. Topol. 19 (2015) 3031 | DOI
,[35] A closed formula for the evaluation of foams, Quantum Topol. 11 (2020) 411 | DOI
, ,[36] Symmetric Khovanov–Rozansky link homologies, J. Éc. Polytech. Math. 7 (2020) 573 | DOI
, ,[37] Khovanov–Rozansky homology and 2–braid groups, from: "Categorification in geometry, topology, and physics" (editors A Beliakova, A D Lauda), Contemp. Math. 684, Amer. Math. Soc. (2017) 147 | DOI
,[38] Quantum field theory for the multi-variable Alexander–Conway polynomial, Nuclear Phys. B 376 (1992) 461 | DOI
, ,[39] On the Alexander polynomial, Ann. of Math. 57 (1953) 57 | DOI
,[40] The Conway and Kauffman modules of a solid torus, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. 167 (1988) 79
,[41] A categorification of the quantum sl(N)–link polynomials using foams, PhD thesis, Universidade do Algarve (2008)
,[42] Quantum relatives of the Alexander polynomial, Algebra i Analiz 18 (2006) 63
,[43] Exponential growth of colored HOMFLY-PT homology, Adv. Math. 353 (2019) 471 | DOI
,[44] A colored sl(N) homology for links in S3, Dissertationes Math. 499 (2014) 1 | DOI
,Cité par Sources :