Topological dualities in the Ising model
Geometry & topology, Tome 26 (2022) no. 5, pp. 1907-1984.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We relate two classical dualities in low-dimensional quantum field theory: Kramers–Wannier duality of the Ising and related lattice models in 2 dimensions, with electromagnetic duality for finite gauge theories in 3 dimensions. The relation is mediated by the notion of boundary field theory: Ising models are boundary theories for pure gauge theory in one dimension higher. Thus the Ising order/disorder operators are endpoints of Wilson/’tHooft defects of gauge theory. Symmetry breaking on low-energy states reflects the multiplicity of topological boundary states. In the process we describe lattice theories as (extended) topological field theories with boundaries and domain walls. This allows us to generalize the duality to nonabelian groups; to finite, semisimple Hopf algebras; and, in a different direction, to finite homotopy theories in arbitrary dimension.

DOI : 10.2140/gt.2022.26.1907
Classification : 57R56, 81T25, 82B20
Keywords: nonabelian Ising model, topological field theory, Turaev–Viro theories, duality

Freed, Daniel S 1 ; Teleman, Constantin 2

1 Department of Mathematics, University of Texas, Austin, TX, United States
2 Department of Mathematics, University of California, Berkeley, CA, United States
@article{GT_2022_26_5_a0,
     author = {Freed, Daniel S and Teleman, Constantin},
     title = {Topological dualities in the {Ising} model},
     journal = {Geometry & topology},
     pages = {1907--1984},
     publisher = {mathdoc},
     volume = {26},
     number = {5},
     year = {2022},
     doi = {10.2140/gt.2022.26.1907},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.1907/}
}
TY  - JOUR
AU  - Freed, Daniel S
AU  - Teleman, Constantin
TI  - Topological dualities in the Ising model
JO  - Geometry & topology
PY  - 2022
SP  - 1907
EP  - 1984
VL  - 26
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.1907/
DO  - 10.2140/gt.2022.26.1907
ID  - GT_2022_26_5_a0
ER  - 
%0 Journal Article
%A Freed, Daniel S
%A Teleman, Constantin
%T Topological dualities in the Ising model
%J Geometry & topology
%D 2022
%P 1907-1984
%V 26
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.1907/
%R 10.2140/gt.2022.26.1907
%F GT_2022_26_5_a0
Freed, Daniel S; Teleman, Constantin. Topological dualities in the Ising model. Geometry & topology, Tome 26 (2022) no. 5, pp. 1907-1984. doi : 10.2140/gt.2022.26.1907. http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.1907/

[1] M Atiyah, Topological quantum field theories, Inst. Hautes Études Sci. Publ. Math. 68 (1988) 175 | DOI

[2] J C Baez, J Dolan, Higher-dimensional algebra and topological quantum field theory, J. Math. Phys. 36 (1995) 6073 | DOI

[3] B Balsam, A Kirillov Jr., Turaev–Viro invariants as an extended TQFT, preprint (2010)

[4] J W Barrett, B W Westbury, Invariants of piecewise-linear 3–manifolds, Trans. Amer. Math. Soc. 348 (1996) 3997 | DOI

[5] J W Barrett, B W Westbury, Spherical categories, Adv. Math. 143 (1999) 357 | DOI

[6] D Ben-Zvi, J Francis, D Nadler, Integral transforms and Drinfeld centers in derived algebraic geometry, J. Amer. Math. Soc. 23 (2010) 909 | DOI

[7] D Ben-Zvi, S Gunningham, Symmetries of categorical representations and the quantum Ngô action, preprint (2017)

[8] E H Brown Jr., M Comenetz, Pontrjagin duality for generalized homology and cohomology theories, Amer. J. Math. 98 (1976) 1 | DOI

[9] J Cardy, Scaling and renormalization in statistical physics, 5, Cambridge Univ. Press (1996) | DOI

[10] C Córdova, T T Dumitrescu, K Intriligator, Exploring 2–group global symmetries, J. High Energy Phys. (2019) | DOI

[11] O Davidovich, State sums in two dimensional fully extended topological field theories, PhD thesis, University of Texas at Austin (2011)

[12] A Debray, The low-energy TQFT of the generalized double semion model, Comm. Math. Phys. 375 (2020) 1079 | DOI

[13] C L Douglas, C Schommer-Pries, N Snyder, Dualizable tensor categories, 1308, Amer. Math. Soc. (2020) | DOI

[14] P Etingof, S Gelaki, D Nikshych, V Ostrik, Tensor categories, 205, Amer. Math. Soc. (2015) | DOI

[15] D S Freed, Higher algebraic structures and quantization, Comm. Math. Phys. 159 (1994) 343 | DOI

[16] D S Freed, The cobordism hypothesis, Bull. Amer. Math. Soc. 50 (2013) 57 | DOI

[17] D S Freed, Lectures on field theory and topology, 133, Amer. Math. Soc. (2019) | DOI

[18] D S Freed, M J Hopkins, Reflection positivity and invertible topological phases, Geom. Topol. 25 (2021) 1165 | DOI

[19] D S Freed, M J Hopkins, J Lurie, C Teleman, Topological quantum field theories from compact Lie groups, from: "A celebration of the mathematical legacy of Raoul Bott" (editor P R Kotiuga), CRM Proc. Lecture Notes 50, Amer. Math. Soc. (2010) 367 | DOI

[20] D S Freed, M J Hopkins, C Teleman, Loop groups and twisted K–theory, I, J. Topol. 4 (2011) 737 | DOI

[21] D S Freed, F Quinn, Chern–Simons theory with finite gauge group, Comm. Math. Phys. 156 (1993) 435 | DOI

[22] D S Freed, C Teleman, Relative quantum field theory, Comm. Math. Phys. 326 (2014) 459 | DOI

[23] D S Freed, C Teleman, Gapped boundary theories in three dimensions, Comm. Math. Phys. 388 (2021) 845 | DOI

[24] D Gaiotto, A Kapustin, N Seiberg, B Willett, Generalized global symmetries, J. High Energy Phys. 2015 (2015) | DOI

[25] T Hayashi, A canonical Tannaka duality for finite semisimple tensor categories, preprint (1999)

[26] G ’T Hooft, On the phase transition towards permanent quark confinement, Nuclear Phys. B 138 (1978) 1 | DOI

[27] C Itzykson, J M Drouffe, Statistical field theory, I: From Brownian motion to renormalization and lattice gauge theory, Cambridge Univ. Press (1989) | DOI

[28] T Johnson-Freyd, C Scheimbauer, (Op)lax natural transformations, twisted quantum field theories, and “even higher” Morita categories, Adv. Math. 307 (2017) 147 | DOI

[29] A Kapustin, N Seiberg, Coupling a QFT to a TQFT and duality, J. High Energy Phys. 2014 (2014) | DOI

[30] R G Larson, D E Radford, Finite-dimensional cosemisimple Hopf algebras in characteristic 0 are semisimple, J. Algebra 117 (1988) 267 | DOI

[31] C I Lazaroiu, On the structure of open-closed topological field theory in two dimensions, Nuclear Phys. B 603 (2001) 497 | DOI

[32] J Lurie, On the classification of topological field theories, from: "Current developments in mathematics, 2008" (editors D Jerison, B Mazur, T Mrowka, W Schmid, R Stanley, S T Yau), International (2009) 129

[33] A Masuoka, Classification of semisimple Hopf algebras, from: "Handbook of algebra, V" (editor M Hazewinkel), Elsevier (2008) 429 | DOI

[34] G W Moore, G B Segal, D–branes and K–theory in 2D topological field theory, from: "Dirichlet branes and mirror symmetry" (editors M R Douglas, M Gross), Clay Math. Monogr. 4, Amer. Math. Soc. (2009)

[35] L Onsager, Crystal statistics, I : A two-dimensional model with an order-disorder transition, Phys. Rev. 65 (1944) 117 | DOI

[36] V Ostrik, Module categories, weak Hopf algebras and modular invariants, Transform. Groups 8 (2003) 177 | DOI

[37] R Peirls, On Ising’s model of ferromagnetism, Math. Proc. Cambridge Philos. Soc. 32 (1936) 477 | DOI

[38] F Quinn, Lectures on axiomatic topological quantum field theory, from: "Geometry and quantum field theory" (editors D S Freed, K K Uhlenbeck), IAS/Park City Math. Ser. 1, Amer. Math. Soc. (1995) 323 | DOI

[39] G Segal, The definition of conformal field theory, from: "Topology, geometry and quantum field theory" (editor U Tillmann), Lond. Math. Soc. Lecture Note Ser. 308, Cambridge Univ. Press (2004) 421

[40] M E Sweedler, Hopf algebras, Benjamin (1969)

[41] C Teleman, Five lectures on topological field theory, from: "Geometry and quantization of moduli spaces" (editors L Álvarez-Cónsul, J E Andersen, I Mundet i Riera), Birkhäuser (2016) 109 | DOI

[42] V Turaev, Homotopy quantum field theory, 10, Eur. Math. Soc. (2010) | DOI

[43] V G Turaev, O Y Viro, State sum invariants of 3–manifolds and quantum 6j–symbols, Topology 31 (1992) 865 | DOI

[44] P Ševera, (Non)abelian Kramers–Wannier duality and topological field theory, J. High Energy Phys. 2002 (2002) | DOI

[45] X G Wen, Topological orders in rigid states, Int. J. Modern Phys. B 4 (1990) 239 | DOI

[46] J H C Whitehead, On C1–complexes, Ann. of Math. 41 (1940) 809 | DOI

[47] K G Wilson, Confinement of quarks, Phys. Rev. D 10 (1974) 2445 | DOI

[48] E Witten, Quantum field theory and the Jones polynomial, Comm. Math. Phys. 121 (1989) 351 | DOI

[49] E Witten, On S–duality in abelian gauge theory, Selecta Math. 1 (1995) 383 | DOI

[50] E Witten, Dynamics of quantum field theory, from: "Quantum fields and strings: a course for mathematicians, II" (editors P Deligne, P Etingof, D S Freed, L C Jeffrey, D Kazhdan, J W Morgan, D R Morrison, E Witten), Amer. Math. Soc. (1999) 1119

Cité par Sources :