Power operations in the Stolz–Teichner program
Geometry & topology, Tome 26 (2022) no. 4, pp. 1773-1848.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

The Stolz–Teichner program proposes a deep connection between geometric field theories and certain cohomology theories. We extend this connection by developing a theory of geometric power operations for geometric field theories restricted to closed bordisms. These operations satisfy relations analogous to the ones exhibited by their homotopical counterparts. We also provide computational tools to identify the geometrically defined operations with the usual power operations on complexified equivariant K–theory. Further, we use the geometric approach to construct power operations for complexified equivariant elliptic cohomology.

DOI : 10.2140/gt.2022.26.1773
Keywords: elliptic cohomology, supersymmetric field theories, equivariant K-theory, power operations, Stolz–Teichner program

Barthel, Tobias 1 ; Berwick-Evans, Daniel 2 ; Stapleton, Nathaniel 3

1 Max Planck Institute for Mathematics, Bonn, Germany
2 Department of Mathematics, University of Illinois at Urbana–Champaign, Urbana, IL, United States
3 Department of Mathematics, University of Kentucky, Lexington, KY, United States
@article{GT_2022_26_4_a6,
     author = {Barthel, Tobias and Berwick-Evans, Daniel and Stapleton, Nathaniel},
     title = {Power operations in the {Stolz{\textendash}Teichner} program},
     journal = {Geometry & topology},
     pages = {1773--1848},
     publisher = {mathdoc},
     volume = {26},
     number = {4},
     year = {2022},
     doi = {10.2140/gt.2022.26.1773},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.1773/}
}
TY  - JOUR
AU  - Barthel, Tobias
AU  - Berwick-Evans, Daniel
AU  - Stapleton, Nathaniel
TI  - Power operations in the Stolz–Teichner program
JO  - Geometry & topology
PY  - 2022
SP  - 1773
EP  - 1848
VL  - 26
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.1773/
DO  - 10.2140/gt.2022.26.1773
ID  - GT_2022_26_4_a6
ER  - 
%0 Journal Article
%A Barthel, Tobias
%A Berwick-Evans, Daniel
%A Stapleton, Nathaniel
%T Power operations in the Stolz–Teichner program
%J Geometry & topology
%D 2022
%P 1773-1848
%V 26
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.1773/
%R 10.2140/gt.2022.26.1773
%F GT_2022_26_4_a6
Barthel, Tobias; Berwick-Evans, Daniel; Stapleton, Nathaniel. Power operations in the Stolz–Teichner program. Geometry & topology, Tome 26 (2022) no. 4, pp. 1773-1848. doi : 10.2140/gt.2022.26.1773. http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.1773/

[1] M Ando, Isogenies of formal group laws and power operations in the cohomology theories En, Duke Math. J. 79 (1995) 423 | DOI

[2] M Ando, Power operations in elliptic cohomology and representations of loop groups, Trans. Amer. Math. Soc. 352 (2000) 5619 | DOI

[3] M F Atiyah, Power operations in K–theory, Q. J. Math. 17 (1966) 165 | DOI

[4] M Atiyah, Topological quantum field theories, Inst. Hautes Études Sci. Publ. Math. 68 (1988) 175 | DOI

[5] M Atiyah, G Segal, On equivariant Euler characteristics, J. Geom. Phys. 6 (1989) 671 | DOI

[6] A Baker, Hecke operators as operations in elliptic cohomology, J. Pure Appl. Algebra 63 (1990) 1 | DOI

[7] A Baker, C Thomas, Classifying spaces, Virasoro equivariant bundles, elliptic cohomology and moonshine, preprint (1999)

[8] T Barthel, N Stapleton, The character of the total power operation, Geom. Topol. 21 (2017) 385 | DOI

[9] M Batchelor, The structure of supermanifolds, Trans. Amer. Math. Soc. 253 (1979) 329 | DOI

[10] K Behrend, P Xu, Differentiable stacks and gerbes, J. Symplectic Geom. 9 (2011) 285 | DOI

[11] D Berwick-Evans, Equivariant elliptic cohomology, gauged sigma models, and discrete torsion, Trans. Amer. Math. Soc. 375 (2021) 369 | DOI

[12] D Berwick-Evans, Supersymmetric field theories and the elliptic index theorem with complex coefficients, Geom. Topol. 25 (2021) 2287 | DOI

[13] D Berwick-Evans, A Tripathy, A model for complex analytic equivariant elliptic cohomology from quantum field theory, preprint (2018)

[14] D Berwick-Evans, A Tripathy, A de Rham model for complex analytic equivariant elliptic cohomology, Adv. Math. 380 (2021) | DOI

[15] D Blottière, Differentiable stacks and Lie groupoids, preprint (2007)

[16] L Borisov, A Libgober, Elliptic genera of singular varieties, Duke Math. J. 116 (2003) 319 | DOI

[17] R R Bruner, J P May, J E Mcclure, M Steinberger, H∞ ring spectra and their applications, 1176, Springer (1986) | DOI

[18] P M Cheung, Supersymmetric field theories and generalized cohomology, PhD thesis, Stanford University (2006)

[19] P Deligne, J W Morgan, Notes on supersymmetry (following Joseph Bernstein), from: "Quantum fields and strings: a course for mathematicians, I" (editors P Deligne, P Etingof, D S Freed, L C Jeffrey, D Kazhdan, J W Morgan, D R Morrison, E Witten), Amer. Math. Soc. (1999) 41

[20] J A Devoto, Equivariant elliptic homology and finite groups, Michigan Math. J. 43 (1996) 3 | DOI

[21] R Dijkgraaf, G Moore, E Verlinde, H Verlinde, Elliptic genera of symmetric products and second quantized strings, Comm. Math. Phys. 185 (1997) 197 | DOI

[22] F Dumitrescu, Superconnections and parallel transport, PhD thesis, University of Notre Dame (2006)

[23] N Ganter, Orbifold genera, product formulas and power operations, Adv. Math. 205 (2006) 84 | DOI

[24] N Ganter, Stringy power operations in Tate K–theory, preprint (2007)

[25] N Ganter, Hecke operators in equivariant elliptic cohomology and generalized Moonshine, from: "Groups and symmetries" (editors J Harnad, P Winternitz), CRM Proc. Lecture Notes 47, Amer. Math. Soc. (2009) 173 | DOI

[26] N Ganter, Global Mackey functors with operations and n–special lambda rings, preprint (2013)

[27] N Ganter, Power operations in orbifold Tate K–theory, Homology Homotopy Appl. 15 (2013) 313 | DOI

[28] D Gepner, L Meier, On equivariant topological modular forms, preprint (2020)

[29] P G Goerss, M J Hopkins, Moduli spaces of commutative ring spectra, from: "Structured ring spectra" (editors A Baker, B Richter), Lond. Math. Soc. Lect. Note Ser. 315, Cambridge Univ. Press (2004) 151 | DOI

[30] D Grady, D Pavlov, Extended field theories are local and have classifying spaces, preprint (2020)

[31] F Han, Supersymmetric QFTs, super loop spaces and Bismut–Chern character, PhD thesis, University of California, Berkeley (2008)

[32] H Hohnhold, M Kreck, S Stolz, P Teichner, Differential forms and 0–dimensional supersymmetric field theories, Quantum Topol. 2 (2011) 1 | DOI

[33] H Hohnhold, S Stolz, P Teichner, From minimal geodesics to supersymmetric field theories, from: "A celebration of the mathematical legacy of Raoul Bott" (editor P R Kotiuga), CRM Proc. Lect. Notes 50, Amer. Math. Soc. (2010) 207 | DOI

[34] M J Hopkins, N J Kuhn, D C Ravenel, Generalized group characters and complex oriented cohomology theories, J. Amer. Math. Soc. 13 (2000) 553 | DOI

[35] Z Huan, Quasi-elliptic cohomology and its power operations, J. Homotopy Relat. Struct. 13 (2018) 715 | DOI

[36] P S Landweber, D C Ravenel, R E Stong, Periodic cohomology theories defined by elliptic curves, from: "The Čech centennial" (editors M Cenkl, H Miller), Contemp. Math. 181, Amer. Math. Soc. (1995) 317 | DOI

[37] J Lurie, Elliptic cohomology, III: Tempered cohomology, preprint (2019)

[38] J Morava, Moonshine elements in elliptic cohomology, from: "Groups and symmetries" (editors J Harnad, P Winternitz), CRM Proc. Lect. Notes 47, Amer. Math. Soc. (2009) 247 | DOI

[39] E Peterson, Formal geometry and bordism operations, 177, Cambridge Univ. Press (2019) | DOI

[40] C Rezk, Isogenies, power operations, and homotopy theory, from: "Proceedings of the International Congress of Mathematicians, II" (editors S Y Jang, Y R Kim, D W Lee, I Ye), Kyung Moon Sa (2014) 1125

[41] C J Schommer-Pries, Central extensions of smooth 2–groups and a finite-dimensional string 2–group, Geom. Topol. 15 (2011) 609 | DOI

[42] C Schommer-Pries, N Stapleton, Singular cohomology from supersymmetric field theories, Adv. Math. 390 (2021) | DOI

[43] S Schwede, Global homotopy theory, 34, Cambridge Univ. Press (2018) | DOI

[44] G Segal, The definition of conformal field theory, from: "Topology, geometry and quantum field theory" (editor U Tillmann), Lond. Math. Soc. Lect. Note Ser. 308, Cambridge Univ. Press (2004) 421 | DOI

[45] A Stoffel, Dimensional reduction and the equivariant Chern character, Algebr. Geom. Topol. 19 (2019) 109 | DOI

[46] A Stoffel, Supersymmetric field theories from twisted vector bundles, Comm. Math. Phys. 367 (2019) 417 | DOI

[47] S Stolz, P Teichner, What is an elliptic object?, from: "Topology, geometry and quantum field theory" (editor U Tillmann), Lond. Math. Soc. Lect. Note Ser. 308, Cambridge Univ. Press (2004) 247 | DOI

[48] S Stolz, P Teichner, Supersymmetric field theories and generalized cohomology, from: "Mathematical foundations of quantum field theory and perturbative string theory" (editors H Sati, U Schreiber), Proc. Sympos. Pure Math. 83, Amer. Math. Soc. (2011) 279 | DOI

[49] N P Strickland, Morava E–theory of symmetric groups, Topology 37 (1998) 757 | DOI

[50] H Tamanoi, Generalized orbifold Euler characteristic of symmetric products and equivariant Morava K–theory, Algebr. Geom. Topol. 1 (2001) 115 | DOI

[51] H Tamanoi, Infinite product decomposition of orbifold mapping spaces, Algebr. Geom. Topol. 9 (2009) 569 | DOI

[52] C B Thomas, Elliptic cohomology, Kluwer (1999) | DOI

Cité par Sources :