Asymptotic homology of graph braid groups
Geometry & topology, Tome 26 (2022) no. 4, pp. 1745-1771.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We give explicit formulas for the asymptotic Betti numbers of the unordered configuration spaces of an arbitrary finite graph over an arbitrary field.

DOI : 10.2140/gt.2022.26.1745
Keywords: configuration spaces, graph braid groups, homological stability

An, Byung Hee 1 ; Drummond-Cole, Gabriel C 2 ; Knudsen, Ben 3

1 Department of Mathematics Education, Teachers College, Kyungpook National University, Daegu, South Korea
2 Center for Geometry and Physics, Institute for Basic Science (IBS), Pohang, South Korea
3 Mathematics Department, Northeastern University, Boston, MA, United States
@article{GT_2022_26_4_a5,
     author = {An, Byung Hee and Drummond-Cole, Gabriel C and Knudsen, Ben},
     title = {Asymptotic homology of graph braid groups},
     journal = {Geometry & topology},
     pages = {1745--1771},
     publisher = {mathdoc},
     volume = {26},
     number = {4},
     year = {2022},
     doi = {10.2140/gt.2022.26.1745},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.1745/}
}
TY  - JOUR
AU  - An, Byung Hee
AU  - Drummond-Cole, Gabriel C
AU  - Knudsen, Ben
TI  - Asymptotic homology of graph braid groups
JO  - Geometry & topology
PY  - 2022
SP  - 1745
EP  - 1771
VL  - 26
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.1745/
DO  - 10.2140/gt.2022.26.1745
ID  - GT_2022_26_4_a5
ER  - 
%0 Journal Article
%A An, Byung Hee
%A Drummond-Cole, Gabriel C
%A Knudsen, Ben
%T Asymptotic homology of graph braid groups
%J Geometry & topology
%D 2022
%P 1745-1771
%V 26
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.1745/
%R 10.2140/gt.2022.26.1745
%F GT_2022_26_4_a5
An, Byung Hee; Drummond-Cole, Gabriel C; Knudsen, Ben. Asymptotic homology of graph braid groups. Geometry & topology, Tome 26 (2022) no. 4, pp. 1745-1771. doi : 10.2140/gt.2022.26.1745. http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.1745/

[1] A D Abrams, Configuration spaces and braid groups of graphs, PhD thesis, University of California, Berkeley (2000)

[2] B H An, G C Drummond-Cole, B Knudsen, Subdivisional spaces and graph braid groups, Doc. Math. 24 (2019) 1513 | DOI

[3] B H An, G C Drummond-Cole, B Knudsen, Edge stabilization in the homology of graph braid groups, Geom. Topol. 24 (2020) 421 | DOI

[4] B H An, B Knudsen, On the second homology of planar graph braid groups, J. Topol. 15 (2022) 666 | DOI

[5] V I Arnold, The cohomology ring of the colored braid group, Mat. Zametki 5 (1969) 227

[6] C F Bödigheimer, F Cohen, L Taylor, On the homology of configuration spaces, Topology 28 (1989) 111 | DOI

[7] S Chettih, D Lütgehetmann, The homology of configuration spaces of trees with loops, Algebr. Geom. Topol. 18 (2018) 2443 | DOI

[8] T Church, Homological stability for configuration spaces of manifolds, Invent. Math. 188 (2012) 465 | DOI

[9] T Church, J S Ellenberg, B Farb, FI–modules and stability for representations of symmetric groups, Duke Math. J. 164 (2015) 1833 | DOI

[10] G C Drummond-Cole, Betti numbers of unordered configuration spaces of small graphs, preprint (2019)

[11] G C Drummond-Cole, B Knudsen, Betti numbers of configuration spaces of surfaces, J. Lond. Math. Soc. 96 (2017) 367 | DOI

[12] D Farley, L Sabalka, Discrete Morse theory and graph braid groups, Algebr. Geom. Topol. 5 (2005) 1075 | DOI

[13] Y Félix, J C Thomas, Rational Betti numbers of configuration spaces, Topology Appl. 102 (2000) 139 | DOI

[14] J H Kim, K H Ko, H W Park, Graph braid groups and right-angled Artin groups, Trans. Amer. Math. Soc. 364 (2012) 309 | DOI

[15] K H Ko, H W Park, Characteristics of graph braid groups, Discrete Comput. Geom. 48 (2012) 915 | DOI

[16] T Maciążek, A Sawicki, Homology groups for particles on one-connected graphs, J. Math. Phys. 58 (2017) | DOI

[17] T Maciążek, A Sawicki, Non-abelian quantum statistics on graphs, Comm. Math. Phys. 371 (2019) 921 | DOI

[18] D Mcduff, Configuration spaces of positive and negative particles, Topology 14 (1975) 91 | DOI

[19] D Miyata, N Proudfoot, E Ramos, The categorical graph minor theorem, preprint (2020)

[20] E Ramos, Stability phenomena in the homology of tree braid groups, Algebr. Geom. Topol. 18 (2018) 2305 | DOI

[21] G Segal, Configuration-spaces and iterated loop-spaces, Invent. Math. 21 (1973) 213 | DOI

[22] J Świątkowski, Estimates for homological dimension of configuration spaces of graphs, Colloq. Math. 89 (2001) 69 | DOI

[23] B Totaro, Configuration spaces of algebraic varieties, Topology 35 (1996) 1057 | DOI

[24] J D Wiltshire-Gordon, Models for configuration space in a simplicial complex, Colloq. Math. 155 (2019) 127 | DOI

Cité par Sources :