Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We study the quantum Witten–Kontsevich series introduced by Buryak, Dubrovin, Guéré and Rossi (2020) as the logarithm of a quantum tau function for the quantum KdV hierarchy. This series depends on a genus parameter and a quantum parameter . When , this series restricts to the Witten–Kontsevich generating series for intersection numbers of psi classes on moduli spaces of stable curves.
We establish a link between the part of the quantum Witten–Kontsevich series and one-part double Hurwitz numbers. These numbers count the number of nonequivalent holomorphic maps from a Riemann surface of genus to with a complete ramification over , a prescribed ramification profile over and a given number of simple ramifications elsewhere. Goulden, Jackson and Vakil (2005) proved that these numbers have the property of being polynomial in the orders of ramification over . We prove that the coefficients of these polynomials are the coefficients of the quantum Witten–Kontsevich series.
We also present some partial results about the full quantum Witten–Kontsevich power series.
Blot, Xavier 1
@article{GT_2022_26_4_a4, author = {Blot, Xavier}, title = {The quantum {Witten{\textendash}Kontsevich} series and one-part double {Hurwitz} numbers}, journal = {Geometry & topology}, pages = {1669--1743}, publisher = {mathdoc}, volume = {26}, number = {4}, year = {2022}, doi = {10.2140/gt.2022.26.1669}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.1669/} }
TY - JOUR AU - Blot, Xavier TI - The quantum Witten–Kontsevich series and one-part double Hurwitz numbers JO - Geometry & topology PY - 2022 SP - 1669 EP - 1743 VL - 26 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.1669/ DO - 10.2140/gt.2022.26.1669 ID - GT_2022_26_4_a4 ER -
Blot, Xavier. The quantum Witten–Kontsevich series and one-part double Hurwitz numbers. Geometry & topology, Tome 26 (2022) no. 4, pp. 1669-1743. doi : 10.2140/gt.2022.26.1669. http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.1669/
[1] Double ramification cycles and integrable hierarchies, Comm. Math. Phys. 336 (2015) 1085 | DOI
,[2] Tau-structure for the double ramification hierarchies, Comm. Math. Phys. 363 (2018) 191 | DOI
, , , ,[3] Integrable systems of double ramification type, Int. Math. Res. Not. 2020 (2020) 10381 | DOI
, , , ,[4] DR/DZ equivalence conjecture and tautological relations, Geom. Topol. 23 (2019) 3537 | DOI
, , ,[5] Double ramification cycles and quantum integrable systems, Lett. Math. Phys. 106 (2016) 289 | DOI
, ,[6] Integrals of ψ–classes over double ramification cycles, Amer. J. Math. 137 (2015) 699 | DOI
, , , ,[7] Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov–Witten invariants, preprint (2001)
, ,[8] Hurwitz numbers and intersections on moduli spaces of curves, Invent. Math. 146 (2001) 297 | DOI
, , , ,[9] Relative maps and tautological classes, J. Eur. Math. Soc. 7 (2005) 13 | DOI
, ,[10] Tautological and non-tautological cohomology of the moduli space of curves, from: "Handbook of moduli, I" (editors G Farkas, I Morrison), Adv. Lect. Math. 24, International (2013) 293
, ,[11] Tautological relations and the r–spin Witten conjecture, Ann. Sci. École Norm. Sup. 43 (2010) 621 | DOI
, , ,[12] Towards the geometry of double Hurwitz numbers, Adv. Math. 198 (2005) 43 | DOI
, , ,[13] Double ramification cycles on the moduli spaces of curves, Publ. Math. Inst. Hautes Études Sci. 125 (2017) 221 | DOI
, , , ,[14] Intersection theory on the moduli space of curves and the matrix Airy function, Comm. Math. Phys. 147 (1992) 1 | DOI
,[15] Toda equations for Hurwitz numbers, Math. Res. Lett. 7 (2000) 447 | DOI
,[16] Gromov–Witten theory, Hurwitz theory, and completed cycles, Ann. of Math. 163 (2006) 517 | DOI
, ,[17] Eulerian numbers, Birkhäuser (2015) | DOI
,[18] Two-dimensional gravity and intersection theory on moduli space, from: "Surveys in differential geometry" (editors H B Lawson Jr., S T Yau), Lehigh Univ. (1991) 243
,[19] Algebraic geometry associated with matrix models of two-dimensional gravity, from: "Topological methods in modern mathematics" (editors L R Goldberg, A V Phillips), Publish or Perish (1993) 235
,Cité par Sources :