The quantum Witten–Kontsevich series and one-part double Hurwitz numbers
Geometry & topology, Tome 26 (2022) no. 4, pp. 1669-1743.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We study the quantum Witten–Kontsevich series introduced by Buryak, Dubrovin, Guéré and Rossi (2020) as the logarithm of a quantum tau function for the quantum KdV hierarchy. This series depends on a genus parameter 𝜖 and a quantum parameter . When = 0, this series restricts to the Witten–Kontsevich generating series for intersection numbers of psi classes on moduli spaces of stable curves.

We establish a link between the 𝜖 = 0 part of the quantum Witten–Kontsevich series and one-part double Hurwitz numbers. These numbers count the number of nonequivalent holomorphic maps from a Riemann surface of genus g to 1 with a complete ramification over 0, a prescribed ramification profile over and a given number of simple ramifications elsewhere. Goulden, Jackson and Vakil (2005) proved that these numbers have the property of being polynomial in the orders of ramification over . We prove that the coefficients of these polynomials are the coefficients of the quantum Witten–Kontsevich series.

We also present some partial results about the full quantum Witten–Kontsevich power series.

DOI : 10.2140/gt.2022.26.1669
Keywords: moduli space of curves, double ramification cycle, quantum KdV, quantum tau function, Hurwitz numbers

Blot, Xavier 1

1 Weizmann Institute of Science, Rehovot, Israel
@article{GT_2022_26_4_a4,
     author = {Blot, Xavier},
     title = {The quantum {Witten{\textendash}Kontsevich} series and one-part double {Hurwitz} numbers},
     journal = {Geometry & topology},
     pages = {1669--1743},
     publisher = {mathdoc},
     volume = {26},
     number = {4},
     year = {2022},
     doi = {10.2140/gt.2022.26.1669},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.1669/}
}
TY  - JOUR
AU  - Blot, Xavier
TI  - The quantum Witten–Kontsevich series and one-part double Hurwitz numbers
JO  - Geometry & topology
PY  - 2022
SP  - 1669
EP  - 1743
VL  - 26
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.1669/
DO  - 10.2140/gt.2022.26.1669
ID  - GT_2022_26_4_a4
ER  - 
%0 Journal Article
%A Blot, Xavier
%T The quantum Witten–Kontsevich series and one-part double Hurwitz numbers
%J Geometry & topology
%D 2022
%P 1669-1743
%V 26
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.1669/
%R 10.2140/gt.2022.26.1669
%F GT_2022_26_4_a4
Blot, Xavier. The quantum Witten–Kontsevich series and one-part double Hurwitz numbers. Geometry & topology, Tome 26 (2022) no. 4, pp. 1669-1743. doi : 10.2140/gt.2022.26.1669. http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.1669/

[1] A Buryak, Double ramification cycles and integrable hierarchies, Comm. Math. Phys. 336 (2015) 1085 | DOI

[2] A Buryak, B Dubrovin, J Guéré, P Rossi, Tau-structure for the double ramification hierarchies, Comm. Math. Phys. 363 (2018) 191 | DOI

[3] A Buryak, B Dubrovin, J Guéré, P Rossi, Integrable systems of double ramification type, Int. Math. Res. Not. 2020 (2020) 10381 | DOI

[4] A Buryak, J Guéré, P Rossi, DR/DZ equivalence conjecture and tautological relations, Geom. Topol. 23 (2019) 3537 | DOI

[5] A Buryak, P Rossi, Double ramification cycles and quantum integrable systems, Lett. Math. Phys. 106 (2016) 289 | DOI

[6] A Buryak, S Shadrin, L Spitz, D Zvonkine, Integrals of ψ–classes over double ramification cycles, Amer. J. Math. 137 (2015) 699 | DOI

[7] B Dubrovin, Y Zhang, Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov–Witten invariants, preprint (2001)

[8] T Ekedahl, S Lando, M Shapiro, A Vainshtein, Hurwitz numbers and intersections on moduli spaces of curves, Invent. Math. 146 (2001) 297 | DOI

[9] C Faber, R Pandharipande, Relative maps and tautological classes, J. Eur. Math. Soc. 7 (2005) 13 | DOI

[10] C Faber, R Pandharipande, Tautological and non-tautological cohomology of the moduli space of curves, from: "Handbook of moduli, I" (editors G Farkas, I Morrison), Adv. Lect. Math. 24, International (2013) 293

[11] C Faber, S Shadrin, D Zvonkine, Tautological relations and the r–spin Witten conjecture, Ann. Sci. École Norm. Sup. 43 (2010) 621 | DOI

[12] I P Goulden, D M Jackson, R Vakil, Towards the geometry of double Hurwitz numbers, Adv. Math. 198 (2005) 43 | DOI

[13] F Janda, R Pandharipande, A Pixton, D Zvonkine, Double ramification cycles on the moduli spaces of curves, Publ. Math. Inst. Hautes Études Sci. 125 (2017) 221 | DOI

[14] M Kontsevich, Intersection theory on the moduli space of curves and the matrix Airy function, Comm. Math. Phys. 147 (1992) 1 | DOI

[15] A Okounkov, Toda equations for Hurwitz numbers, Math. Res. Lett. 7 (2000) 447 | DOI

[16] A Okounkov, R Pandharipande, Gromov–Witten theory, Hurwitz theory, and completed cycles, Ann. of Math. 163 (2006) 517 | DOI

[17] T K Petersen, Eulerian numbers, Birkhäuser (2015) | DOI

[18] E Witten, Two-dimensional gravity and intersection theory on moduli space, from: "Surveys in differential geometry" (editors H B Lawson Jr., S T Yau), Lehigh Univ. (1991) 243

[19] E Witten, Algebraic geometry associated with matrix models of two-dimensional gravity, from: "Topological methods in modern mathematics" (editors L R Goldberg, A V Phillips), Publish or Perish (1993) 235

Cité par Sources :