Noncollapsed degeneration of Einstein 4–manifolds, II
Geometry & topology, Tome 26 (2022) no. 4, pp. 1529-1634.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

In this second article, we prove that any desingularization in the Gromov–Hausdorff sense of an Einstein orbifold by smooth Einstein metrics is the result of a gluing-perturbation procedure that we develop. This builds on our first paper, where we proved that a Gromov–Hausdorff convergence implies a much stronger convergence in suitable weighted Hölder spaces, in which the analysis of the present paper takes place.

The description of Einstein metrics as the result of a gluing-perturbation procedure sheds light on the local structure of the moduli space of Einstein metrics near its boundary. More importantly here, we extend the obstruction to the desingularization of Einstein orbifolds found by Biquard, and prove that it holds for any desingularization by trees of quotients of gravitational instantons only assuming a mere Gromov–Hausdorff convergence instead of specific weighted Hölder spaces. This is conjecturally the general case, and can at least be ensured by topological assumptions such as a spin structure on the degenerating manifolds. We also identify an obstruction to desingularizing spherical and hyperbolic orbifolds by general Ricci-flat ALE spaces.

DOI : 10.2140/gt.2022.26.1529
Classification : 53C20, 53C21, 53C25, 53C23, 58D27
Keywords: Einstein 4-manifolds, compactness, gluing-perturbation, moduli space

Ozuch, Tristan 1

1 Department of Mathematics, MIT, Cambridge, MA, United States
@article{GT_2022_26_4_a2,
     author = {Ozuch, Tristan},
     title = {Noncollapsed degeneration of {Einstein} 4{\textendash}manifolds, {II}},
     journal = {Geometry & topology},
     pages = {1529--1634},
     publisher = {mathdoc},
     volume = {26},
     number = {4},
     year = {2022},
     doi = {10.2140/gt.2022.26.1529},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.1529/}
}
TY  - JOUR
AU  - Ozuch, Tristan
TI  - Noncollapsed degeneration of Einstein 4–manifolds, II
JO  - Geometry & topology
PY  - 2022
SP  - 1529
EP  - 1634
VL  - 26
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.1529/
DO  - 10.2140/gt.2022.26.1529
ID  - GT_2022_26_4_a2
ER  - 
%0 Journal Article
%A Ozuch, Tristan
%T Noncollapsed degeneration of Einstein 4–manifolds, II
%J Geometry & topology
%D 2022
%P 1529-1634
%V 26
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.1529/
%R 10.2140/gt.2022.26.1529
%F GT_2022_26_4_a2
Ozuch, Tristan. Noncollapsed degeneration of Einstein 4–manifolds, II. Geometry & topology, Tome 26 (2022) no. 4, pp. 1529-1634. doi : 10.2140/gt.2022.26.1529. http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.1529/

[1] A G Ache, J A Viaclovsky, Obstruction-flat asymptotically locally Euclidean metrics, Geom. Funct. Anal. 22 (2012) 832 | DOI

[2] M T Anderson, Ricci curvature bounds and Einstein metrics on compact manifolds, J. Amer. Math. Soc. 2 (1989) 455 | DOI

[3] M T Anderson, The L2 structure of moduli spaces of Einstein metrics on 4–manifolds, Geom. Funct. Anal. 2 (1992) 29 | DOI

[4] M T Anderson, A survey of Einstein metrics on 4–manifolds, from: "Handbook of geometric analysis, III" (editors L Ji, P Li, R Schoen, L Simon), Adv. Lect. Math. 14, International (2010) 1

[5] H Auvray, From ALE to ALF gravitational instantons, Compos. Math. 154 (2018) 1159 | DOI

[6] R H Bamler, Construction of Einstein metrics by generalized Dehn filling, J. Eur. Math. Soc. 14 (2012) 887 | DOI

[7] S Bando, Bubbling out of Einstein manifolds, Tohoku Math. J. 42 (1990) 205 | DOI

[8] S Bando, A Kasue, H Nakajima, On a construction of coordinates at infinity on manifolds with fast curvature decay and maximal volume growth, Invent. Math. 97 (1989) 313 | DOI

[9] O Biquard, Désingularisation de métriques d’Einstein, I, Invent. Math. 192 (2013) 197 | DOI

[10] O Biquard, Non dégénérescence et singularités des métriques d’Einstein asymptotiquement hyperboliques en dimension 4, Math. Ann. 372 (2018) 531 | DOI

[11] O Biquard, H J Hein, The renormalized volume of a 4–dimensional Ricci-flat ALE space, (2019)

[12] O Biquard, Y Rollin, Smoothing singular constant scalar curvature Kähler surfaces and minimal Lagrangians, Adv. Math. 285 (2015) 980 | DOI

[13] S Brendle, N Kapouleas, Gluing Eguchi–Hanson metrics and a question of Page, Comm. Pure Appl. Math. 70 (2017) 1366 | DOI

[14] J Cheeger, G Tian, On the cone structure at infinity of Ricci flat manifolds with Euclidean volume growth and quadratic curvature decay, Invent. Math. 118 (1994) 493 | DOI

[15] J Cheeger, G Tian, Curvature and injectivity radius estimates for Einstein 4–manifolds, J. Amer. Math. Soc. 19 (2006) 487 | DOI

[16] T Eguchi, A J Hanson, Self-dual solutions to Euclidean gravity, Ann. Physics 120 (1979) 82 | DOI

[17] G B Folland, Harmonic analysis of the de Rham complex on the sphere, J. Reine Angew. Math. 398 (1989) 130 | DOI

[18] M J Gursky, J A Viaclovsky, Critical metrics on connected sums of Einstein four-manifolds, Adv. Math. 292 (2016) 210 | DOI

[19] J Han, J A Viaclovsky, Existence and compactness theory for ALE scalar-flat Kähler surfaces, Forum Math. Sigma 8 (2020) | DOI

[20] V Kapovitch, J Lott, On noncollapsed almost Ricci-flat 4–manifolds, Amer. J. Math. 141 (2019) 737 | DOI

[21] N Koiso, Einstein metrics and complex structures, Invent. Math. 73 (1983) 71 | DOI

[22] P B Kronheimer, The construction of ALE spaces as hyper-Kähler quotients, J. Differential Geom. 29 (1989) 665

[23] P B Kronheimer, A Torelli-type theorem for gravitational instantons, J. Differential Geom. 29 (1989) 685

[24] M T Lock, J A Viaclovsky, Quotient singularities, eta invariants, and self-dual metrics, Geom. Topol. 20 (2016) 1773 | DOI

[25] R B Lockhart, R C Mcowen, Elliptic differential operators on noncompact manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 12 (1985) 409

[26] D Mccullough, Isometries of elliptic 3–manifolds, J. Lond. Math. Soc. 65 (2002) 167 | DOI

[27] H Nakajima, Self-duality of ALE Ricci-flat 4–manifolds and positive mass theorem, from: "Recent topics in differential and analytic geometry" (editor T Ochiai), Adv. Stud. Pure Math. 18-I, Academic (1990) 385 | DOI

[28] Y Odaka, C Spotti, S Sun, Compact moduli spaces of del Pezzo surfaces and Kähler–Einstein metrics, J. Differential Geom. 102 (2016) 127

[29] T Ozuch, Noncollapsed degeneration of Einstein 4–manifolds, I, Geom. Topol. 26 (2022) 1485 | DOI

[30] F Pacard, T Rivière, Linear and nonlinear aspects of vortices : The Ginzburg–Landau model, 39, Birkhäuser (2000) | DOI

[31] C Spotti, Deformations of nodal Kähler–Einstein del Pezzo surfaces with discrete automorphism groups, J. Lond. Math. Soc. 89 (2014) 539 | DOI

[32] I Şuvaina, ALE Ricci-flat Kähler metrics and deformations of quotient surface singularities, Ann. Global Anal. Geom. 41 (2012) 109 | DOI

[33] E F Whittlesey, Analytic functions in Banach spaces, Proc. Amer. Math. Soc. 16 (1965) 1077 | DOI

Cité par Sources :