Noncollapsed degeneration of Einstein 4–manifolds, I
Geometry & topology, Tome 26 (2022) no. 4, pp. 1483-1528.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

A theorem of Anderson and Bando, Kasue and Nakajima from 1989 states that to compactify the set of normalized Einstein metrics with a lower bound on the volume and an upper bound on the diameter in the Gromov–Hausdorff sense, one has to add singular spaces, called Einstein orbifolds, and the singularities form as blow-downs of Ricci-flat ALE spaces.

This raises some natural issues, in particular: Can all Einstein orbifolds be Gromov–Hausdorff limits of smooth Einstein manifolds? Can we describe more precisely the smooth Einstein metrics close to a given singular one?

In this first paper, we prove that Einstein manifolds sufficiently close, in the Gromov–Hausdorff sense, to an orbifold are actually close to a gluing of model spaces in suitable weighted Hölder spaces. The proof consists in controlling the metric in the neck regions thanks to the construction of optimal coordinates.

This refined convergence is the cornerstone of our subsequent work on the degeneration of Einstein metrics or, equivalently, on the desingularization of Einstein orbifolds, in which we show that all Einstein metrics Gromov–Hausdorff close to an Einstein orbifold are the result of a gluing-perturbation procedure. This procedure turns out to be generally obstructed, and this provides the first obstructions to a Gromov–Hausdorff desingularization of Einstein orbifolds.

DOI : 10.2140/gt.2022.26.1483
Classification : 53C20, 53C21, 53C25, 53C23, 58D27
Keywords: Einstein 4-manifolds, compactness, moduli space

Ozuch, Tristan 1

1 Department of Mathematics, MIT, Cambridge, MA, United States
@article{GT_2022_26_4_a1,
     author = {Ozuch, Tristan},
     title = {Noncollapsed degeneration of {Einstein} 4{\textendash}manifolds, {I}},
     journal = {Geometry & topology},
     pages = {1483--1528},
     publisher = {mathdoc},
     volume = {26},
     number = {4},
     year = {2022},
     doi = {10.2140/gt.2022.26.1483},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.1483/}
}
TY  - JOUR
AU  - Ozuch, Tristan
TI  - Noncollapsed degeneration of Einstein 4–manifolds, I
JO  - Geometry & topology
PY  - 2022
SP  - 1483
EP  - 1528
VL  - 26
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.1483/
DO  - 10.2140/gt.2022.26.1483
ID  - GT_2022_26_4_a1
ER  - 
%0 Journal Article
%A Ozuch, Tristan
%T Noncollapsed degeneration of Einstein 4–manifolds, I
%J Geometry & topology
%D 2022
%P 1483-1528
%V 26
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.1483/
%R 10.2140/gt.2022.26.1483
%F GT_2022_26_4_a1
Ozuch, Tristan. Noncollapsed degeneration of Einstein 4–manifolds, I. Geometry & topology, Tome 26 (2022) no. 4, pp. 1483-1528. doi : 10.2140/gt.2022.26.1483. http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.1483/

[1] M T Anderson, Ricci curvature bounds and Einstein metrics on compact manifolds, J. Amer. Math. Soc. 2 (1989) 455 | DOI

[2] M T Anderson, A survey of Einstein metrics on 4–manifolds, from: "Handbook of geometric analysis, III" (editors L Ji, P Li, R Schoen, L Simon), Adv. Lect. Math. 14, International (2010) 1

[3] S Bando, Bubbling out of Einstein manifolds, Tohoku Math. J. 42 (1990) 205 | DOI

[4] S Bando, A Kasue, H Nakajima, On a construction of coordinates at infinity on manifolds with fast curvature decay and maximal volume growth, Invent. Math. 97 (1989) 313 | DOI

[5] A L Besse, Einstein manifolds, 10, Springer (1987) | DOI

[6] O Biquard, Désingularisation de métriques d’Einstein, I, Invent. Math. 192 (2013) 197 | DOI

[7] J Cheeger, T H Colding, Lower bounds on Ricci curvature and the almost rigidity of warped products, Ann. of Math. 144 (1996) 189 | DOI

[8] J Cheeger, M Gromov, M Taylor, Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds, J. Differential Geom. 17 (1982) 15

[9] J Cheeger, A Naber, Regularity of Einstein manifolds and the codimension 4 conjecture, Ann. of Math. 182 (2015) 1093 | DOI

[10] O Chodosh, M Eichmair, A Volkmann, Isoperimetric structure of asymptotically conical manifolds, J. Differential Geom. 105 (2017) 1

[11] T H Colding, Ricci curvature and volume convergence, Ann. of Math. 145 (1997) 477 | DOI

[12] D G Ebin, The manifold of Riemannian metrics, from: "Global analysis" (editors S s Chern, S Smale), Proc. Sympos. Pure Math. 15, Amer. Math. Soc. (1970) 11

[13] L Z Gao, Einstein metrics, J. Differential Geom. 32 (1990) 155

[14] M Gromov, Structures métriques pour les variétés riemanniennes, 1, CEDIC (1981)

[15] G Huisken, A Polden, Geometric evolution equations for hypersurfaces, from: "Calculus of variations and geometric evolution problems" (editors S Hildebrandt, M Struwe), Lecture Notes in Math. 1713, Springer (1999) 45 | DOI

[16] P B Kronheimer, The construction of ALE spaces as hyper-Kähler quotients, J. Differential Geom. 29 (1989) 665

[17] H Nakajima, Self-duality of ALE Ricci-flat 4–manifolds and positive mass theorem, from: "Recent topics in differential and analytic geometry" (editor T Ochiai), Adv. Stud. Pure Math. 18-I, Academic (1990) 385 | DOI

[18] T Ozuch, Noncollapsed degeneration of Einstein 4–manifolds, II, Geom. Topol. 26 (2022) 1531 | DOI

[19] F Pacard, X Xu, Constant mean curvature spheres in Riemannian manifolds, Manuscripta Math. 128 (2009) 275 | DOI

[20] P Petersen, Riemannian geometry, 171, Springer (1998) | DOI

[21] I Şuvaina, ALE Ricci-flat Kähler metrics and deformations of quotient surface singularities, Ann. Global Anal. Geom. 41 (2012) 109 | DOI

[22] R Ye, Constant mean curvature foliation: singularity structure and curvature estimate, Pacific J. Math. 174 (1996) 569 | DOI

Cité par Sources :