Orbifold stability and Miyaoka–Yau inequality for minimal pairs
Geometry & topology, Tome 26 (2022) no. 4, pp. 1435-1482.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

After establishing suitable notions of stability and Chern classes for singular pairs, we use Kähler–Einstein metrics with conical and cuspidal singularities to prove the slope semistability of orbifold tangent sheaves of minimal log canonical pairs of log general type. We then proceed to prove the Miyaoka–Yau inequality for all minimal pairs with standard coefficients. Our result in particular provides an alternative proof of the abundance theorem for threefolds, which is independent of positivity results for cotangent sheaves established by Miyaoka.

DOI : 10.2140/gt.2022.26.1435
Classification : 14E20, 14E30, 32Q20, 14C15, 14C17, 32Q26, 53C07
Keywords: Miayoka-Yau inequality, minimal models, orbifold pairs, singular Kähler-Einstein metrics

Guenancia, Henri 1 ; Taji, Behrouz 2

1 Institut de Mathématiques de Toulouse, Université de Toulouse, Toulouse, France
2 School of Mathematics and Statistics, The University of Sydney, Sydney NSW, Australia
@article{GT_2022_26_4_a0,
     author = {Guenancia, Henri and Taji, Behrouz},
     title = {Orbifold stability and {Miyaoka{\textendash}Yau} inequality for minimal pairs},
     journal = {Geometry & topology},
     pages = {1435--1482},
     publisher = {mathdoc},
     volume = {26},
     number = {4},
     year = {2022},
     doi = {10.2140/gt.2022.26.1435},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.1435/}
}
TY  - JOUR
AU  - Guenancia, Henri
AU  - Taji, Behrouz
TI  - Orbifold stability and Miyaoka–Yau inequality for minimal pairs
JO  - Geometry & topology
PY  - 2022
SP  - 1435
EP  - 1482
VL  - 26
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.1435/
DO  - 10.2140/gt.2022.26.1435
ID  - GT_2022_26_4_a0
ER  - 
%0 Journal Article
%A Guenancia, Henri
%A Taji, Behrouz
%T Orbifold stability and Miyaoka–Yau inequality for minimal pairs
%J Geometry & topology
%D 2022
%P 1435-1482
%V 26
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.1435/
%R 10.2140/gt.2022.26.1435
%F GT_2022_26_4_a0
Guenancia, Henri; Taji, Behrouz. Orbifold stability and Miyaoka–Yau inequality for minimal pairs. Geometry & topology, Tome 26 (2022) no. 4, pp. 1435-1482. doi : 10.2140/gt.2022.26.1435. http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.1435/

[1] M Artin, Algebraic approximation of structures over complete local rings, Inst. Hautes Études Sci. Publ. Math. 36 (1969) 23 | DOI

[2] T Aubin, Équations du type Monge–Ampère sur les variétés kählériennes compactes, Bull. Sci. Math. 102 (1978) 63

[3] R J Berman, S Boucksom, P Eyssidieux, V Guedj, A Zeriahi, Kähler–Einstein metrics and the Kähler–Ricci flow on log Fano varieties, J. Reine Angew. Math. 751 (2019) 27 | DOI

[4] R J Berman, H Guenancia, Kähler–Einstein metrics on stable varieties and log canonical pairs, Geom. Funct. Anal. 24 (2014) 1683 | DOI

[5] F Campana, H Guenancia, M Păun, Metrics with cone singularities along normal crossing divisors and holomorphic tensor fields, Ann. Sci. École Norm. Sup. 46 (2013) 879 | DOI

[6] F Campana, M Păun, Positivity properties of the bundle of logarithmic tensors on compact Kähler manifolds, Compos. Math. 152 (2016) 2350 | DOI

[7] B Claudon, S Kebekus, B Taji, Generic positivity and applications to hyperbolicity of moduli spaces, from: "Hyperbolicity in algebraic varieties" (editors S Diverio, C Voisin), Panoramas et Synthèses 56, Soc. Math. France (2022) 173

[8] H Flenner, Restrictions of semistable bundles on projective varieties, Comment. Math. Helv. 59 (1984) 635 | DOI

[9] W Fulton, Intersection theory, 2, Springer (1984) | DOI

[10] D Greb, H Guenancia, S Kebekus, Klt varieties with trivial canonical class: holonomy, differential forms, and fundamental groups, Geom. Topol. 23 (2019) 2051 | DOI

[11] D Greb, S Kebekus, S J Kovács, T Peternell, Differential forms on log canonical spaces, Publ. Math. Inst. Hautes Études Sci. 114 (2011) 87 | DOI

[12] D Greb, S Kebekus, T Peternell, B Taji, The Miyaoka–Yau inequality and uniformisation of canonical models, Ann. Sci. École Norm. Sup. 52 (2019) 1487 | DOI

[13] V Guedj, A Zeriahi, The weighted Monge–Ampère energy of quasiplurisubharmonic functions, J. Funct. Anal. 250 (2007) 442 | DOI

[14] H Guenancia, Kähler–Einstein metrics with mixed Poincaré and cone singularities along a normal crossing divisor, Ann. Inst. Fourier (Grenoble) 64 (2014) 1291 | DOI

[15] H Guenancia, Semistability of the tangent sheaf of singular varieties, Algebr. Geom. 3 (2016) 508 | DOI

[16] H Guenancia, M Păun, Conic singularities metrics with prescribed Ricci curvature : general cone angles along normal crossing divisors, J. Differential Geom. 103 (2016) 15

[17] H Guenancia, D Wu, On the boundary behavior of Kähler–Einstein metrics on log canonical pairs, Math. Ann. 366 (2016) 101 | DOI

[18] D Huybrechts, M Lehn, The geometry of moduli spaces of sheaves, E31, Friedr. Vieweg Sohn (1997) | DOI

[19] K Jabbusch, S Kebekus, Families over special base manifolds and a conjecture of Campana, Math. Z. 269 (2011) 847 | DOI

[20] T Jeffres, R Mazzeo, Y A Rubinstein, Kähler–Einstein metrics with edge singularities, Ann. of Math. 183 (2016) 95 | DOI

[21] Y Kawamata, Abundance theorem for minimal threefolds, Invent. Math. 108 (1992) 229 | DOI

[22] R Kobayashi, Kähler–Einstein metric on an open algebraic manifold, Osaka J. Math. 21 (1984) 399

[23] J Kollár, editor, Flips and abundance for algebraic threefolds, 211, Soc. Math. France (1992) 1

[24] J Kollár, Singularities of pairs, from: "Algebraic geometry" (editors J Kollár, R Lazarsfeld, D R Morrison), Proc. Sympos. Pure Math. 62, Amer. Math. Soc. (1997) 221 | DOI

[25] J Kollár, S Mori, Birational geometry of algebraic varieties, 134, Cambridge Univ. Press (1998) | DOI

[26] R Lazarsfeld, Positivity in algebraic geometry, I : Classical setting : line bundles and linear series, 48, Springer (2004) | DOI

[27] R Lazarsfeld, Positivity in algebraic geometry, II : Positivity for vector bundles, and multiplier ideals, 49, Springer (2004) | DOI

[28] G Megyesi, Chern classes of Q–sheaves, from: "Flips and abundance for algebraic threefolds" (editor J Kollár), Astérisque 211, Soc. Math. France (1992) 115

[29] Y Miyaoka, The Chern classes and Kodaira dimension of a minimal variety, from: "Algebraic geometry" (editor T Oda), Adv. Stud. Pure Math. 10, North-Holland (1987) 449 | DOI

[30] D Mumford, Towards an enumerative geometry of the moduli space of curves, from: "Arithmetic and geometry, II" (editors M Artin, J Tate), Progr. Math. 36, Birkhäuser (1983) 271 | DOI

[31] C T Simpson, Constructing variations of Hodge structure using Yang–Mills theory and applications to uniformization, J. Amer. Math. Soc. 1 (1988) 867 | DOI

[32] C T Simpson, Higgs bundles and local systems, Inst. Hautes Études Sci. Publ. Math. 75 (1992) 5 | DOI

[33] J Song, X Wang, The greatest Ricci lower bound, conical Einstein metrics and Chern number inequality, Geom. Topol. 20 (2016) 49 | DOI

[34] G Tian, Kähler–Einstein metrics on algebraic manifolds, from: "Transcendental methods in algebraic geometry" (editors F Catanese, C Ciliberto), Lecture Notes in Math. 1646, Springer (1996) 143 | DOI

[35] G Tian, S T Yau, Existence of Kähler–Einstein metrics on complete Kähler manifolds and their applications to algebraic geometry, from: "Mathematical aspects of string theory" (editor S T Yau), Adv. Ser. Math. Phys. 1, World Sci. (1987) 574 | DOI

[36] H Tsuji, Existence and degeneration of Kähler–Einstein metrics on minimal algebraic varieties of general type, Math. Ann. 281 (1988) 123 | DOI

[37] S T Yau, Calabi’s conjecture and some new results in algebraic geometry, Proc. Nat. Acad. Sci. U.S.A. 74 (1977) 1798 | DOI

[38] S T Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation, I, Comm. Pure Appl. Math. 31 (1978) 339 | DOI

[39] Y Zhang, Miyaoka–Yau inequality for minimal projective manifolds of general type, Proc. Amer. Math. Soc. 137 (2009) 2749 | DOI

[40] Z Zhang, Scalar curvature bound for Kähler–Ricci flows over minimal manifolds of general type, Int. Math. Res. Not. 2009 (2009) 3901 | DOI

Cité par Sources :