Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We prove that for a compact –manifold with boundary admitting an ideal triangulation with valence at least 10 at all edges, there exists a unique complete hyperbolic metric with totally geodesic boundary, so that is isotopic to a geometric decomposition of . Our approach is to use a variant of the combinatorial Ricci flow introduced by Luo (Electron. Res. Announc. Amer. Math. Soc. 11 (2005) 12–20) for pseudo-–manifolds. In this case, we prove that the extended Ricci flow converges to the hyperbolic metric exponentially fast.
Feng, Ke 1 ; Ge, Huabin 2 ; Hua, Bobo 3
@article{GT_2022_26_3_a6, author = {Feng, Ke and Ge, Huabin and Hua, Bobo}, title = {Combinatorial {Ricci} flows and the hyperbolization of a class of compact 3{\textendash}manifolds}, journal = {Geometry & topology}, pages = {1349--1384}, publisher = {mathdoc}, volume = {26}, number = {3}, year = {2022}, doi = {10.2140/gt.2022.26.1349}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.1349/} }
TY - JOUR AU - Feng, Ke AU - Ge, Huabin AU - Hua, Bobo TI - Combinatorial Ricci flows and the hyperbolization of a class of compact 3–manifolds JO - Geometry & topology PY - 2022 SP - 1349 EP - 1384 VL - 26 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.1349/ DO - 10.2140/gt.2022.26.1349 ID - GT_2022_26_3_a6 ER -
%0 Journal Article %A Feng, Ke %A Ge, Huabin %A Hua, Bobo %T Combinatorial Ricci flows and the hyperbolization of a class of compact 3–manifolds %J Geometry & topology %D 2022 %P 1349-1384 %V 26 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.1349/ %R 10.2140/gt.2022.26.1349 %F GT_2022_26_3_a6
Feng, Ke; Ge, Huabin; Hua, Bobo. Combinatorial Ricci flows and the hyperbolization of a class of compact 3–manifolds. Geometry & topology, Tome 26 (2022) no. 3, pp. 1349-1384. doi : 10.2140/gt.2022.26.1349. http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.1349/
[1] Hyperideal polyhedra in hyperbolic 3–space, Bull. Soc. Math. France 130 (2002) 457 | DOI
, ,[2] Discrete conformal maps and ideal hyperbolic polyhedra, Geom. Topol. 19 (2015) 2155 | DOI
, , ,[3] A Schläfli-type formula for convex cores of hyperbolic 3–manifolds, J. Differential Geom. 50 (1998) 25
,[4] Positively oriented ideal triangulations on hyperbolic three-manifolds, Topology 43 (2004) 1345 | DOI
,[5] Combinatorial Ricci flows on surfaces, J. Differential Geom. 63 (2003) 97
, ,[6] A variational principle for domino tilings, J. Amer. Math. Soc. 14 (2001) 297 | DOI
, , ,[7] Un principe variationnel pour les empilements de cercles, Invent. Math. 104 (1991) 655 | DOI
,[8] Triangulations of 3–manifolds, hyperbolic relative handlebodies, and Dehn filling, Comment. Math. Helv. 82 (2007) 903 | DOI
, , , ,[9] On the volume conjecture for polyhedra, Geom. Dedicata 179 (2015) 385 | DOI
, , ,[10] Hyperbolic manifolds with geodesic boundary which are determined by their fundamental group, Topology Appl. 145 (2004) 69 | DOI
,[11] Construction and recognition of hyperbolic 3–manifolds with geodesic boundary, Trans. Amer. Math. Soc. 356 (2004) 3243 | DOI
, ,[12] Hyperbolic 3–manifolds with totally geodesic boundary, Osaka J. Math. 27 (1990) 539
,[13] Hyperbolic 3–manifolds with totally geodesic boundary which are decomposed into hyperbolic truncated tetrahedra, Tokyo J. Math. 13 (1990) 353 | DOI
,[14] From angled triangulations to hyperbolic structures, from: "Interactions between hyperbolic geometry, quantum topology and number theory" (editors A Champanerkar, O Dasbach, E Kalfagianni, I Kofman, W Neumann, N Stoltzfus), Contemp. Math. 541, Amer. Math. Soc. (2011) 159 | DOI
, ,[15] 1–efficient triangulations and the index of a cusped hyperbolic 3–manifold, Geom. Topol. 19 (2015) 2619 | DOI
, , , ,[16] 3–Dimensional combinatorial Yamabe flow in hyperbolic background geometry, Trans. Amer. Math. Soc. 373 (2020) 5111 | DOI
, ,[17] On the deformation of discrete conformal factors on surfaces, Calc. Var. Partial Differential Equations 55 (2016) | DOI
, ,[18] On the deformation of ball packings, Adv. Math. 398 (2022) | DOI
, , ,[19] Triangulations of hyperbolic 3–manifolds admitting strict angle structures, J. Topol. 5 (2012) 887 | DOI
, , ,[20] Hyperbolic manifolds and discrete groups, 183, Birkhäuser (2001) | DOI
,[21] Polyhedral decomposition of hyperbolic 3–manifolds with totally geodesic boundary, from: "Aspects of low-dimensional manifolds" (editors Y Matsumoto, S Morita), Adv. Stud. Pure Math. 20, Kinokuniya (1992) 93 | DOI
,[22] Taut ideal triangulations of 3–manifolds, Geom. Topol. 4 (2000) 369 | DOI
,[23] Word hyperbolic Dehn surgery, Invent. Math. 140 (2000) 243 | DOI
,[24] Constructing hyperbolic manifolds which bound geometrically, Math. Res. Lett. 8 (2001) 443 | DOI
, ,[25] A combinatorial curvature flow for compact 3–manifolds with boundary, Electron. Res. Announc. Amer. Math. Soc. 11 (2005) 12 | DOI
,[26] Volume and angle structures on 3–manifolds, Asian J. Math. 11 (2007) 555 | DOI
,[27] Rigidity of polyhedral surfaces, III, Geom. Topol. 15 (2011) 2299 | DOI
,[28] Volume optimization, normal surfaces, and Thurston’s equation on triangulated 3–manifolds, J. Differential Geom. 93 (2013) 299
,[29] Volume and rigidity of hyperbolic polyhedral 3–manifolds, J. Topol. 11 (2018) 1 | DOI
, ,[30] Affine structures in 3–manifolds, V : The triangulation theorem and Hauptvermutung, Ann. of Math. 56 (1952) 96 | DOI
,[31] Le théorème d’hyperbolisation pour les variétés fibrées de dimension 3, 235, Soc. Math. France (1996)
,[32] Ordinary differential equations, Addison-Wesley (1962) | DOI
,[33] Euclidean structures on simplicial surfaces and hyperbolic volume, Ann. of Math. 139 (1994) 553 | DOI
,[34] Combinatorial optimization in geometry, Adv. Appl. Math. 31 (2003) 242 | DOI
,[35] Volumes of degenerating polyhedra : on a conjecture of J W Milnor, Geom. Dedicata 131 (2008) 73 | DOI
,[36] Hyperideal polyhedra in hyperbolic manifolds, preprint (2002)
,[37] Geometry and topology of three-manifolds, lecture notes (1980)
,[38] A volume formula for generalised hyperbolic tetrahedra, from: "Non-Euclidean geometries" (editors A Prékopa, E Molnár), Math. Appl. (NY) 581, Springer (2006) 249 | DOI
,[39] The deformation theory of hyperbolic cone-3–manifolds with cone-angles less than 2π, Geom. Topol. 17 (2013) 329 | DOI
,Cité par Sources :