Combinatorial Ricci flows and the hyperbolization of a class of compact 3–manifolds
Geometry & topology, Tome 26 (2022) no. 3, pp. 1349-1384.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove that for a compact 3–manifold M with boundary admitting an ideal triangulation 𝒯 with valence at least 10 at all edges, there exists a unique complete hyperbolic metric with totally geodesic boundary, so that 𝒯 is isotopic to a geometric decomposition of M. Our approach is to use a variant of the combinatorial Ricci flow introduced by Luo (Electron. Res. Announc. Amer. Math. Soc. 11 (2005) 12–20) for pseudo-3–manifolds. In this case, we prove that the extended Ricci flow converges to the hyperbolic metric exponentially fast.

DOI : 10.2140/gt.2022.26.1349
Keywords: Ricci flow, hyperbolization, 3–manifold, ideal triangulation, hyperbolic metric

Feng, Ke 1 ; Ge, Huabin 2 ; Hua, Bobo 3

1 School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
2 School of Mathematics, Renmin University of China, Beijing, China
3 School of Mathematical Sciences, LMNS, Fudan University, Shanghai, China, Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China
@article{GT_2022_26_3_a6,
     author = {Feng, Ke and Ge, Huabin and Hua, Bobo},
     title = {Combinatorial {Ricci} flows and the hyperbolization of a class of compact 3{\textendash}manifolds},
     journal = {Geometry & topology},
     pages = {1349--1384},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {2022},
     doi = {10.2140/gt.2022.26.1349},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.1349/}
}
TY  - JOUR
AU  - Feng, Ke
AU  - Ge, Huabin
AU  - Hua, Bobo
TI  - Combinatorial Ricci flows and the hyperbolization of a class of compact 3–manifolds
JO  - Geometry & topology
PY  - 2022
SP  - 1349
EP  - 1384
VL  - 26
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.1349/
DO  - 10.2140/gt.2022.26.1349
ID  - GT_2022_26_3_a6
ER  - 
%0 Journal Article
%A Feng, Ke
%A Ge, Huabin
%A Hua, Bobo
%T Combinatorial Ricci flows and the hyperbolization of a class of compact 3–manifolds
%J Geometry & topology
%D 2022
%P 1349-1384
%V 26
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.1349/
%R 10.2140/gt.2022.26.1349
%F GT_2022_26_3_a6
Feng, Ke; Ge, Huabin; Hua, Bobo. Combinatorial Ricci flows and the hyperbolization of a class of compact 3–manifolds. Geometry & topology, Tome 26 (2022) no. 3, pp. 1349-1384. doi : 10.2140/gt.2022.26.1349. http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.1349/

[1] X Bao, F Bonahon, Hyperideal polyhedra in hyperbolic 3–space, Bull. Soc. Math. France 130 (2002) 457 | DOI

[2] A I Bobenko, U Pinkall, B A Springborn, Discrete conformal maps and ideal hyperbolic polyhedra, Geom. Topol. 19 (2015) 2155 | DOI

[3] F Bonahon, A Schläfli-type formula for convex cores of hyperbolic 3–manifolds, J. Differential Geom. 50 (1998) 25

[4] Y E Choi, Positively oriented ideal triangulations on hyperbolic three-manifolds, Topology 43 (2004) 1345 | DOI

[5] B Chow, F Luo, Combinatorial Ricci flows on surfaces, J. Differential Geom. 63 (2003) 97

[6] H Cohn, R Kenyon, J Propp, A variational principle for domino tilings, J. Amer. Math. Soc. 14 (2001) 297 | DOI

[7] Y Colin De Verdière, Un principe variationnel pour les empilements de cercles, Invent. Math. 104 (1991) 655 | DOI

[8] F Costantino, R Frigerio, B Martelli, C Petronio, Triangulations of 3–manifolds, hyperbolic relative handlebodies, and Dehn filling, Comment. Math. Helv. 82 (2007) 903 | DOI

[9] F Costantino, F Guéritaud, R Van Der Veen, On the volume conjecture for polyhedra, Geom. Dedicata 179 (2015) 385 | DOI

[10] R Frigerio, Hyperbolic manifolds with geodesic boundary which are determined by their fundamental group, Topology Appl. 145 (2004) 69 | DOI

[11] R Frigerio, C Petronio, Construction and recognition of hyperbolic 3–manifolds with geodesic boundary, Trans. Amer. Math. Soc. 356 (2004) 3243 | DOI

[12] M Fujii, Hyperbolic 3–manifolds with totally geodesic boundary, Osaka J. Math. 27 (1990) 539

[13] M Fujii, Hyperbolic 3–manifolds with totally geodesic boundary which are decomposed into hyperbolic truncated tetrahedra, Tokyo J. Math. 13 (1990) 353 | DOI

[14] D Futer, F Guéritaud, From angled triangulations to hyperbolic structures, from: "Interactions between hyperbolic geometry, quantum topology and number theory" (editors A Champanerkar, O Dasbach, E Kalfagianni, I Kofman, W Neumann, N Stoltzfus), Contemp. Math. 541, Amer. Math. Soc. (2011) 159 | DOI

[15] S Garoufalidis, C D Hodgson, J H Rubinstein, H Segerman, 1–efficient triangulations and the index of a cusped hyperbolic 3–manifold, Geom. Topol. 19 (2015) 2619 | DOI

[16] H Ge, B Hua, 3–Dimensional combinatorial Yamabe flow in hyperbolic background geometry, Trans. Amer. Math. Soc. 373 (2020) 5111 | DOI

[17] H Ge, W Jiang, On the deformation of discrete conformal factors on surfaces, Calc. Var. Partial Differential Equations 55 (2016) | DOI

[18] H Ge, W Jiang, L Shen, On the deformation of ball packings, Adv. Math. 398 (2022) | DOI

[19] C D Hodgson, J H Rubinstein, H Segerman, Triangulations of hyperbolic 3–manifolds admitting strict angle structures, J. Topol. 5 (2012) 887 | DOI

[20] M Kapovich, Hyperbolic manifolds and discrete groups, 183, Birkhäuser (2001) | DOI

[21] S Kojima, Polyhedral decomposition of hyperbolic 3–manifolds with totally geodesic boundary, from: "Aspects of low-dimensional manifolds" (editors Y Matsumoto, S Morita), Adv. Stud. Pure Math. 20, Kinokuniya (1992) 93 | DOI

[22] M Lackenby, Taut ideal triangulations of 3–manifolds, Geom. Topol. 4 (2000) 369 | DOI

[23] M Lackenby, Word hyperbolic Dehn surgery, Invent. Math. 140 (2000) 243 | DOI

[24] D D Long, A W Reid, Constructing hyperbolic manifolds which bound geometrically, Math. Res. Lett. 8 (2001) 443 | DOI

[25] F Luo, A combinatorial curvature flow for compact 3–manifolds with boundary, Electron. Res. Announc. Amer. Math. Soc. 11 (2005) 12 | DOI

[26] F Luo, Volume and angle structures on 3–manifolds, Asian J. Math. 11 (2007) 555 | DOI

[27] F Luo, Rigidity of polyhedral surfaces, III, Geom. Topol. 15 (2011) 2299 | DOI

[28] F Luo, Volume optimization, normal surfaces, and Thurston’s equation on triangulated 3–manifolds, J. Differential Geom. 93 (2013) 299

[29] F Luo, T Yang, Volume and rigidity of hyperbolic polyhedral 3–manifolds, J. Topol. 11 (2018) 1 | DOI

[30] E E Moise, Affine structures in 3–manifolds, V : The triangulation theorem and Hauptvermutung, Ann. of Math. 56 (1952) 96 | DOI

[31] J P Otal, Le théorème d’hyperbolisation pour les variétés fibrées de dimension 3, 235, Soc. Math. France (1996)

[32] L S Pontryagin, Ordinary differential equations, Addison-Wesley (1962) | DOI

[33] I Rivin, Euclidean structures on simplicial surfaces and hyperbolic volume, Ann. of Math. 139 (1994) 553 | DOI

[34] I Rivin, Combinatorial optimization in geometry, Adv. Appl. Math. 31 (2003) 242 | DOI

[35] I Rivin, Volumes of degenerating polyhedra : on a conjecture of J W Milnor, Geom. Dedicata 131 (2008) 73 | DOI

[36] J M Schlenker, Hyperideal polyhedra in hyperbolic manifolds, preprint (2002)

[37] W Thurston, Geometry and topology of three-manifolds, lecture notes (1980)

[38] A Ushijima, A volume formula for generalised hyperbolic tetrahedra, from: "Non-Euclidean geometries" (editors A Prékopa, E Molnár), Math. Appl. (NY) 581, Springer (2006) 249 | DOI

[39] H Weiss, The deformation theory of hyperbolic cone-3–manifolds with cone-angles less than 2π, Geom. Topol. 17 (2013) 329 | DOI

Cité par Sources :