A homological model for Uq𝔰𝔩2 Verma modules and their braid representations
Geometry & topology, Tome 26 (2022) no. 3, pp. 1225-1289.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We extend Lawrence’s representations of the braid groups to relative homology modules and we show that they are free modules over a ring of Laurent polynomials. We define homological operators and we show that they actually provide a representation for an integral version for Uq𝔰𝔩(2). We suggest an isomorphism between a given basis of homological modules and the standard basis of tensor products of Verma modules and we show it preserves the integral ring of coefficients, the action of Uq𝔰𝔩(2), the braid group representation and its grading. This recovers an integral version for Kohno’s theorem relating absolute Lawrence representations with the quantum braid representation on highest-weight vectors. This is an extension of the latter theorem as we get rid of generic conditions on parameters, and as we recover the entire product of Verma modules as a braid group and a Uq𝔰𝔩(2)–module.

DOI : 10.2140/gt.2022.26.1225
Classification : 17B37, 20F36, 57M27, 57R56, 55N25, 55R80, 57M10
Keywords: quantum groups, braid representations, Verma modules, configuration spaces, twisted homology

Martel, Jules 1

1 Max Planck Institute for Mathematics, Bonn, Germany
@article{GT_2022_26_3_a4,
     author = {Martel, Jules},
     title = {A homological model for {Uq\ensuremath{\mathfrak{s}}\ensuremath{\mathfrak{l}}2} {Verma} modules and their braid representations},
     journal = {Geometry & topology},
     pages = {1225--1289},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {2022},
     doi = {10.2140/gt.2022.26.1225},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.1225/}
}
TY  - JOUR
AU  - Martel, Jules
TI  - A homological model for Uq𝔰𝔩2 Verma modules and their braid representations
JO  - Geometry & topology
PY  - 2022
SP  - 1225
EP  - 1289
VL  - 26
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.1225/
DO  - 10.2140/gt.2022.26.1225
ID  - GT_2022_26_3_a4
ER  - 
%0 Journal Article
%A Martel, Jules
%T A homological model for Uq𝔰𝔩2 Verma modules and their braid representations
%J Geometry & topology
%D 2022
%P 1225-1289
%V 26
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.1225/
%R 10.2140/gt.2022.26.1225
%F GT_2022_26_3_a4
Martel, Jules. A homological model for Uq𝔰𝔩2 Verma modules and their braid representations. Geometry & topology, Tome 26 (2022) no. 3, pp. 1225-1289. doi : 10.2140/gt.2022.26.1225. http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.1225/

[1] S Baseilhac, Quantum coadjoint action and the 6j–symbols of Uqsl2, from: "Interactions between hyperbolic geometry, quantum topology and number theory" (editors A Champanerkar, O Dasbach, E Kalfagianni, I Kofman, W Neumann, N Stoltzfus), Contemp. Math. 541, Amer. Math. Soc. (2011) 103 | DOI

[2] S J Bigelow, Braid groups are linear, J. Amer. Math. Soc. 14 (2001) 471 | DOI

[3] S Bigelow, A homological definition of the Jones polynomial, from: "Invariants of knots and –manifolds" (editors T Ohtsuki, T Kohno, T Le, J Murakami, J Roberts, V Turaev), Geom. Topol. Monogr. 4, Geom. Topol. Publ. (2002) 29 | DOI

[4] S Bigelow, Homological representations of the Iwahori–Hecke algebra, from: "Proceedings of the Casson Fest" (editors C Gordon, Y Rieck), Geom. Topol. Monogr. 7, Geom. Topol. Publ. (2004) 493 | DOI

[5] V Chari, A Pressley, A guide to quantum groups, Cambridge Univ. Press (1994)

[6] C De Concini, C Procesi, Quantum groups, from: "–modules, representation theory, and quantum groups" (editors G Zampieri, A D’Agnolo), Lecture Notes in Math. 1565, Springer (1993) 31 | DOI

[7] V G Drinfeld, Quasi-Hopf algebras, Algebra i Analiz 1 (1989) 114

[8] J M Droz, E Wagner, Grid diagrams and Khovanov homology, Algebr. Geom. Topol. 9 (2009) 1275 | DOI

[9] G Felder, C Wieczerkowski, Topological representations of the quantum group Uq(sl2), Comm. Math. Phys. 138 (1991) 583 | DOI

[10] K Habiro, An integral form of the quantized enveloping algebra of sl2 and its completions, J. Pure Appl. Algebra 211 (2007) 265 | DOI

[11] T Ito, Reading the dual Garside length of braids from homological and quantum representations, Comm. Math. Phys. 335 (2015) 345 | DOI

[12] C Jackson, T Kerler, The Lawrence–Krammer–Bigelow representations of the braid groups via Uq(sl2), Adv. Math. 228 (2011) 1689 | DOI

[13] C Kassel, Quantum groups, 155, Springer (1995) | DOI

[14] T Kohno, Monodromy representations of braid groups and Yang–Baxter equations, Ann. Inst. Fourier (Grenoble) 37 (1987) 139

[15] T Kohno, Hyperplane arrangements, local system homology and iterated integrals, from: "Arrangements of hyperplanes" (editors H Terao, S Yuzvinsky), Adv. Stud. Pure Math. 62, Math. Soc. Japan (2012) 157 | DOI

[16] T Kohno, Quantum and homological representations of braid groups, from: "Configuration spaces" (editors A Bjorner, F Cohen, C De Concini, C Procesi, M Salvetti), CRM Series 14, Ed. Norm. (2012) 355 | DOI

[17] D Krammer, Braid groups are linear, Ann. of Math. 155 (2002) 131 | DOI

[18] R J Lawrence, Homological representations of the Hecke algebra, Comm. Math. Phys. 135 (1990) 141 | DOI

[19] G Lusztig, Finite-dimensional Hopf algebras arising from quantized universal enveloping algebras, J. Amer. Math. Soc. 3 (1990) 257 | DOI

[20] C Manolescu, Nilpotent slices, Hilbert schemes, and the Jones polynomial, Duke Math. J. 132 (2006) 311 | DOI

[21] L Paoluzzi, L Paris, A note on the Lawrence–Krammer–Bigelow representation, Algebr. Geom. Topol. 2 (2002) 499 | DOI

[22] M Salvetti, Topology of the complement of real hyperplanes in CN, Invent. Math. 88 (1987) 603 | DOI

[23] V V Schechtman, A N Varchenko, Quantum groups and homology of local systems, from: "Algebraic geometry and analytic geometry" (editors A Fujiki, K Kato, T Katsura, Y Kawamata, Y Miyaoka), Springer (1991) 182 | DOI

[24] H Zheng, A reflexive representation of braid groups, J. Knot Theory Ramifications 14 (2005) 467 | DOI

Cité par Sources :