Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Given a triangulation of a closed surface, we consider a cross-ratio system that assigns a complex number to every edge satisfying certain polynomial equations per vertex. Every cross-ratio system induces a complex projective structure together with a circle pattern. In particular, there is an associated conformal structure. We show that for any triangulated torus, the projection from the space of cross-ratio systems with prescribed Delaunay angles to the Teichmüller space of the closed torus is a covering map with at most one branch point. Our approach is based on a notion of discrete holomorphic quadratic differentials.
Lam, Wai Yeung 1
@article{GT_2021_25_2_a7, author = {Lam, Wai Yeung}, title = {Quadratic differentials and circle patterns on complex projective tori}, journal = {Geometry & topology}, pages = {961--997}, publisher = {mathdoc}, volume = {25}, number = {2}, year = {2021}, doi = {10.2140/gt.2021.25.961}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.961/} }
TY - JOUR AU - Lam, Wai Yeung TI - Quadratic differentials and circle patterns on complex projective tori JO - Geometry & topology PY - 2021 SP - 961 EP - 997 VL - 25 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.961/ DO - 10.2140/gt.2021.25.961 ID - GT_2021_25_2_a7 ER -
Lam, Wai Yeung. Quadratic differentials and circle patterns on complex projective tori. Geometry & topology, Tome 25 (2021) no. 2, pp. 961-997. doi : 10.2140/gt.2021.25.961. http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.961/
[1] Discrete Zγ and Painlevé equations, Int. Math. Res. Not. 2000 (2000) 165 | DOI
, ,[2] The deformation of flat affine structures on the two-torus, from: "Handbook of Teichmüller theory, IV" (editor A Papadopoulos), IRMA Lect. Math. Theor. Phys. 19, Eur. Math. Soc. (2014) 461 | DOI
,[3] Spiral hexagonal circle packings in the plane, Geom. Dedicata 49 (1994) 39 | DOI
, , ,[4] Discrete conformal maps and ideal hyperbolic polyhedra, Geom. Topol. 19 (2015) 2155 | DOI
, , ,[5] Discrete Riemann surfaces : linear discretization and its convergence, J. Reine Angew. Math. 720 (2016) 217 | DOI
, ,[6] Variational principles for circle patterns and Koebe’s theorem, Trans. Amer. Math. Soc. 356 (2004) 659 | DOI
, ,[7] Discrete differential geometry: integrable structure, 98, Amer. Math. Soc. (2008)
, ,[8] Description of moduli space of projective structures via fat graphs, preprint (1993)
,[9] Moduli spaces of local systems and higher Teichmüller theory, Publ. Math. Inst. Hautes Études Sci. 103 (2006) 1 | DOI
, ,[10] A discrete uniformization theorem for polyhedral surfaces, II, J. Differential Geom. 109 (2018) 431 | DOI
, , , , ,[11] Lectures on Riemann surfaces, Princeton Univ. Press (1966)
,[12] Solving Beltrami equations by circle packing, Trans. Amer. Math. Soc. 322 (1990) 657 | DOI
,[13] Orthogonal icosahedra, Nordisk Mat. Tidskr. 15 (1967) 90
,[14] Dimers and circle patterns, preprint (2018)
, , , ,[15] Discrete conformal mappings via circle patterns, ACM Trans. Graph. 25 (2006) 412 | DOI
, , ,[16] Circle packings on surfaces with projective structures, J. Differential Geom. 63 (2003) 349 | DOI
, , ,[17] Discrete minimal surfaces: critical points of the area functional from integrable systems, Int. Math. Res. Not. 2018 (2018) 1808 | DOI
,[18] Minimal surfaces from infinitesimal deformations of circle packings, Adv. Math. 362 (2020) | DOI
,[19] Holomorphic vector fields and quadratic differentials on planar triangular meshes, from: "Advances in discrete differential geometry" (editor A I Bobenko), Springer (2016) 241 | DOI
, ,[20] Isothermic triangulated surfaces, Math. Ann. 368 (2017) 165 | DOI
, ,[21] Projective structures and projective bundles over compact Riemann surfaces, from: "Équations différentielles et singularités" (editors F Cano, F Loray, J J Moralez-Ruiz, P Sad, M Spivakovsky), Astérisque 323, Soc. Math. France (2009) 223
, ,[22] Circle packings on complex affine tori, Osaka J. Math. 37 (2000) 873
,[23] Computing discrete minimal surfaces and their conjugates, Experiment. Math. 2 (1993) 15 | DOI
, ,[24] Euclidean structures on simplicial surfaces and hyperbolic volume, Ann. of Math. 139 (1994) 553 | DOI
,[25] The convergence of circle packings to the Riemann mapping, J. Differential Geom. 26 (1987) 349 | DOI
, ,[26] Circle packings on conformal and affine tori, from: "Computational algebraic and analytic geometry" (editors M Seppälä, E Volcheck), Contemp. Math. 572, Amer. Math. Soc. (2012) 211 | DOI
, , ,[27] Properness for circle packings and Delaunay circle patterns on complex projective structures, preprint (2018)
, ,[28] Discrete complex analysis and probability, from: "Proceedings of the International Congress of Mathematicians, I" (editors R Bhatia, A Pal, G Rangarajan, V Srinivas, M Vanninathan), Hindustan (2010) 595
,[29] Introduction to circle packing: the theory of discrete analytic functions, Cambridge Univ. Press (2005)
,[30] The geometry and topology of 3–manifolds, lecture notes (1980)
,[31] Constructing quasiconformal maps using circle packings and Brook’s parametrization of quadrilaterals, Ann. Acad. Sci. Fenn. Math. 44 (2019) 877 | DOI
,Cité par Sources :