Quadratic differentials and circle patterns on complex projective tori
Geometry & topology, Tome 25 (2021) no. 2, pp. 961-997.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Given a triangulation of a closed surface, we consider a cross-ratio system that assigns a complex number to every edge satisfying certain polynomial equations per vertex. Every cross-ratio system induces a complex projective structure together with a circle pattern. In particular, there is an associated conformal structure. We show that for any triangulated torus, the projection from the space of cross-ratio systems with prescribed Delaunay angles to the Teichmüller space of the closed torus is a covering map with at most one branch point. Our approach is based on a notion of discrete holomorphic quadratic differentials.

DOI : 10.2140/gt.2021.25.961
Classification : 52C26, 05B40, 30F60, 32G15, 57M50
Keywords: circle patterns, discrete conformal geometry, complex projective structures

Lam, Wai Yeung 1

1 Mathematics Research Unit, Université du Luxembourg, Esch-sur-Alzette, Luxembourg, Mathematics Department, Brown University, Providence, RI, United States, Beijing Institute of Mathematical Sciences and Applications, Beijing, China
@article{GT_2021_25_2_a7,
     author = {Lam, Wai Yeung},
     title = {Quadratic differentials and circle patterns on complex projective tori},
     journal = {Geometry & topology},
     pages = {961--997},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2021},
     doi = {10.2140/gt.2021.25.961},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.961/}
}
TY  - JOUR
AU  - Lam, Wai Yeung
TI  - Quadratic differentials and circle patterns on complex projective tori
JO  - Geometry & topology
PY  - 2021
SP  - 961
EP  - 997
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.961/
DO  - 10.2140/gt.2021.25.961
ID  - GT_2021_25_2_a7
ER  - 
%0 Journal Article
%A Lam, Wai Yeung
%T Quadratic differentials and circle patterns on complex projective tori
%J Geometry & topology
%D 2021
%P 961-997
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.961/
%R 10.2140/gt.2021.25.961
%F GT_2021_25_2_a7
Lam, Wai Yeung. Quadratic differentials and circle patterns on complex projective tori. Geometry & topology, Tome 25 (2021) no. 2, pp. 961-997. doi : 10.2140/gt.2021.25.961. http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.961/

[1] S I Agafonov, A I Bobenko, Discrete Zγ and Painlevé equations, Int. Math. Res. Not. 2000 (2000) 165 | DOI

[2] O Baues, The deformation of flat affine structures on the two-torus, from: "Handbook of Teichmüller theory, IV" (editor A Papadopoulos), IRMA Lect. Math. Theor. Phys. 19, Eur. Math. Soc. (2014) 461 | DOI

[3] A F Beardon, T Dubejko, K Stephenson, Spiral hexagonal circle packings in the plane, Geom. Dedicata 49 (1994) 39 | DOI

[4] A I Bobenko, U Pinkall, B A Springborn, Discrete conformal maps and ideal hyperbolic polyhedra, Geom. Topol. 19 (2015) 2155 | DOI

[5] A Bobenko, M Skopenkov, Discrete Riemann surfaces : linear discretization and its convergence, J. Reine Angew. Math. 720 (2016) 217 | DOI

[6] A I Bobenko, B A Springborn, Variational principles for circle patterns and Koebe’s theorem, Trans. Amer. Math. Soc. 356 (2004) 659 | DOI

[7] A I Bobenko, Y B Suris, Discrete differential geometry: integrable structure, 98, Amer. Math. Soc. (2008)

[8] V Fock, Description of moduli space of projective structures via fat graphs, preprint (1993)

[9] V Fock, A Goncharov, Moduli spaces of local systems and higher Teichmüller theory, Publ. Math. Inst. Hautes Études Sci. 103 (2006) 1 | DOI

[10] X Gu, R Guo, F Luo, J Sun, T Wu, A discrete uniformization theorem for polyhedral surfaces, II, J. Differential Geom. 109 (2018) 431 | DOI

[11] R C Gunning, Lectures on Riemann surfaces, Princeton Univ. Press (1966)

[12] Z X He, Solving Beltrami equations by circle packing, Trans. Amer. Math. Soc. 322 (1990) 657 | DOI

[13] B Jessen, Orthogonal icosahedra, Nordisk Mat. Tidskr. 15 (1967) 90

[14] R Kenyon, W Y Lam, S Ramassamy, M Russkikh, Dimers and circle patterns, preprint (2018)

[15] L Kharevych, B Springborn, P Schröder, Discrete conformal mappings via circle patterns, ACM Trans. Graph. 25 (2006) 412 | DOI

[16] S Kojima, S Mizushima, S P Tan, Circle packings on surfaces with projective structures, J. Differential Geom. 63 (2003) 349 | DOI

[17] W Y Lam, Discrete minimal surfaces: critical points of the area functional from integrable systems, Int. Math. Res. Not. 2018 (2018) 1808 | DOI

[18] W Y Lam, Minimal surfaces from infinitesimal deformations of circle packings, Adv. Math. 362 (2020) | DOI

[19] W Y Lam, U Pinkall, Holomorphic vector fields and quadratic differentials on planar triangular meshes, from: "Advances in discrete differential geometry" (editor A I Bobenko), Springer (2016) 241 | DOI

[20] W Y Lam, U Pinkall, Isothermic triangulated surfaces, Math. Ann. 368 (2017) 165 | DOI

[21] F Loray, D Marín Pérez, Projective structures and projective bundles over compact Riemann surfaces, from: "Équations différentielles et singularités" (editors F Cano, F Loray, J J Moralez-Ruiz, P Sad, M Spivakovsky), Astérisque 323, Soc. Math. France (2009) 223

[22] S Mizushima, Circle packings on complex affine tori, Osaka J. Math. 37 (2000) 873

[23] U Pinkall, K Polthier, Computing discrete minimal surfaces and their conjugates, Experiment. Math. 2 (1993) 15 | DOI

[24] I Rivin, Euclidean structures on simplicial surfaces and hyperbolic volume, Ann. of Math. 139 (1994) 553 | DOI

[25] B Rodin, D Sullivan, The convergence of circle packings to the Riemann mapping, J. Differential Geom. 26 (1987) 349 | DOI

[26] C T Sass, K Stephenson, G B Williams, Circle packings on conformal and affine tori, from: "Computational algebraic and analytic geometry" (editors M Seppälä, E Volcheck), Contemp. Math. 572, Amer. Math. Soc. (2012) 211 | DOI

[27] J M Schlenker, A Yarmola, Properness for circle packings and Delaunay circle patterns on complex projective structures, preprint (2018)

[28] S Smirnov, Discrete complex analysis and probability, from: "Proceedings of the International Congress of Mathematicians, I" (editors R Bhatia, A Pal, G Rangarajan, V Srinivas, M Vanninathan), Hindustan (2010) 595

[29] K Stephenson, Introduction to circle packing: the theory of discrete analytic functions, Cambridge Univ. Press (2005)

[30] W P Thurston, The geometry and topology of 3–manifolds, lecture notes (1980)

[31] G B Williams, Constructing quasiconformal maps using circle packings and Brook’s parametrization of quadrilaterals, Ann. Acad. Sci. Fenn. Math. 44 (2019) 877 | DOI

Cité par Sources :