Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
This is the first part of our project toward proving the Bershadsky–Cecotti–Ooguri–Vafa Feynman graph sum formula of all genera Gromov–Witten invariants of quintic Calabi–Yau threefolds. We introduce the notion of –mixed-spin- fields, construct their moduli spaces, their virtual cycles and their virtual localization formulas, and obtain a vanishing result associated with irregular graphs.
Chang, Huai-Liang 1 ; Guo, Shuai 2 ; Li, Jun 3 ; Li, Wei-Ping 1
@article{GT_2021_25_2_a3, author = {Chang, Huai-Liang and Guo, Shuai and Li, Jun and Li, Wei-Ping}, title = {The theory of {N{\textendash}mixed-spin-P} fields}, journal = {Geometry & topology}, pages = {775--811}, publisher = {mathdoc}, volume = {25}, number = {2}, year = {2021}, doi = {10.2140/gt.2021.25.775}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.775/} }
TY - JOUR AU - Chang, Huai-Liang AU - Guo, Shuai AU - Li, Jun AU - Li, Wei-Ping TI - The theory of N–mixed-spin-P fields JO - Geometry & topology PY - 2021 SP - 775 EP - 811 VL - 25 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.775/ DO - 10.2140/gt.2021.25.775 ID - GT_2021_25_2_a3 ER -
Chang, Huai-Liang; Guo, Shuai; Li, Jun; Li, Wei-Ping. The theory of N–mixed-spin-P fields. Geometry & topology, Tome 25 (2021) no. 2, pp. 775-811. doi : 10.2140/gt.2021.25.775. http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.775/
[1] Moduli of twisted spin curves, Proc. Amer. Math. Soc. 131 (2003) 685 | DOI
, ,[2] The intrinsic normal cone, Invent. Math. 128 (1997) 45 | DOI
, ,[3] BCOV’s Feynman rule of quintic 3–folds, preprint (2018)
, , ,[4] Polynomial structure of Gromov–Witten potential of quintic 3–folds, preprint (2018)
, , ,[5] Genus-one Gromov–Witten invariants of quintic three-folds via MSP localization, Int. Math. Res. Not. 2020 (2020) 6347 | DOI
, , , ,[6] Torus localization and wall crossing for cosection localized virtual cycles, Adv. Math. 308 (2017) 964 | DOI
, , ,[7] Gromov–Witten invariants of stable maps with fields, Int. Math. Res. Not. 2012 (2012) 4163 | DOI
, ,[8] A vanishing associated with irregular MSP fields, Int. Math. Res. Not. 2020 (2020) 7347 | DOI
, ,[9] Witten’s top Chern class via cosection localization, Invent. Math. 200 (2015) 1015 | DOI
, , ,[10] An effective theory of GW and FJRW invariants of quintics Calabi–Yau manifolds, preprint (2016)
, , , ,[11] Mixed-spin-P fields of Fermat polynomials, Cambridge J. Math. 7 (2019) 319 | DOI
, , , ,[12] Localization of virtual classes, Invent. Math. 135 (1999) 487 | DOI
, ,[13] Genus-one mirror symmetry in the Landau–Ginzburg model, Algebr. Geom. 6 (2019) 260 | DOI
, ,[14] Spin Gromov–Witten invariants, Comm. Math. Phys. 259 (2005) 511 | DOI
, , ,[15] Localizing virtual cycles by cosections, J. Amer. Math. Soc. 26 (2013) 1025 | DOI
, ,[16] Virtual moduli cycles and Gromov–Witten invariants of algebraic varieties, J. Amer. Math. Soc. 11 (1998) 119 | DOI
, ,[17] (Log) twisted curves, Compos. Math. 143 (2007) 476 | DOI
,[18] Phases of N = 2 theories in two dimensions, Nuclear Phys. B 403 (1993) 159 | DOI
,[19] Topological string partition functions as polynomials, J. High Energy Phys. 2004 (2004) | DOI
, ,Cité par Sources :