The theory of N–mixed-spin-P fields
Geometry & topology, Tome 25 (2021) no. 2, pp. 775-811.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

This is the first part of our project toward proving the Bershadsky–Cecotti–Ooguri–Vafa Feynman graph sum formula of all genera Gromov–Witten invariants of quintic Calabi–Yau threefolds. We introduce the notion of N–mixed-spin-P fields, construct their moduli spaces, their virtual cycles and their virtual localization formulas, and obtain a vanishing result associated with irregular graphs.

DOI : 10.2140/gt.2021.25.775
Classification : 14D23, 14J33, 14N35
Keywords: Gromov–Witten, mirror symmetry, high genus, mixed-spin-$P$ fields, cosection localization

Chang, Huai-Liang 1 ; Guo, Shuai 2 ; Li, Jun 3 ; Li, Wei-Ping 1

1 Department of Mathematics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
2 School of Mathematical Sciences and Beijing International Center for Mathematical Research, Peking University, Haidian, Beijing, China
3 Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China
@article{GT_2021_25_2_a3,
     author = {Chang, Huai-Liang and Guo, Shuai and Li, Jun and Li, Wei-Ping},
     title = {The theory of {N{\textendash}mixed-spin-P} fields},
     journal = {Geometry & topology},
     pages = {775--811},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2021},
     doi = {10.2140/gt.2021.25.775},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.775/}
}
TY  - JOUR
AU  - Chang, Huai-Liang
AU  - Guo, Shuai
AU  - Li, Jun
AU  - Li, Wei-Ping
TI  - The theory of N–mixed-spin-P fields
JO  - Geometry & topology
PY  - 2021
SP  - 775
EP  - 811
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.775/
DO  - 10.2140/gt.2021.25.775
ID  - GT_2021_25_2_a3
ER  - 
%0 Journal Article
%A Chang, Huai-Liang
%A Guo, Shuai
%A Li, Jun
%A Li, Wei-Ping
%T The theory of N–mixed-spin-P fields
%J Geometry & topology
%D 2021
%P 775-811
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.775/
%R 10.2140/gt.2021.25.775
%F GT_2021_25_2_a3
Chang, Huai-Liang; Guo, Shuai; Li, Jun; Li, Wei-Ping. The theory of N–mixed-spin-P fields. Geometry & topology, Tome 25 (2021) no. 2, pp. 775-811. doi : 10.2140/gt.2021.25.775. http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.775/

[1] D Abramovich, T J Jarvis, Moduli of twisted spin curves, Proc. Amer. Math. Soc. 131 (2003) 685 | DOI

[2] K Behrend, B Fantechi, The intrinsic normal cone, Invent. Math. 128 (1997) 45 | DOI

[3] H L Chang, S Guo, J Li, BCOV’s Feynman rule of quintic 3–folds, preprint (2018)

[4] H L Chang, S Guo, J Li, Polynomial structure of Gromov–Witten potential of quintic 3–folds, preprint (2018)

[5] H L Chang, S Guo, W P Li, J Zhou, Genus-one Gromov–Witten invariants of quintic three-folds via MSP localization, Int. Math. Res. Not. 2020 (2020) 6347 | DOI

[6] H L Chang, Y H Kiem, J Li, Torus localization and wall crossing for cosection localized virtual cycles, Adv. Math. 308 (2017) 964 | DOI

[7] H L Chang, J Li, Gromov–Witten invariants of stable maps with fields, Int. Math. Res. Not. 2012 (2012) 4163 | DOI

[8] H L Chang, J Li, A vanishing associated with irregular MSP fields, Int. Math. Res. Not. 2020 (2020) 7347 | DOI

[9] H L Chang, J Li, W P Li, Witten’s top Chern class via cosection localization, Invent. Math. 200 (2015) 1015 | DOI

[10] H L Chang, J Li, W P Li, C C M Liu, An effective theory of GW and FJRW invariants of quintics Calabi–Yau manifolds, preprint (2016)

[11] H L Chang, J Li, W P Li, C C M Liu, Mixed-spin-P fields of Fermat polynomials, Cambridge J. Math. 7 (2019) 319 | DOI

[12] T Graber, R Pandharipande, Localization of virtual classes, Invent. Math. 135 (1999) 487 | DOI

[13] S Guo, D Ross, Genus-one mirror symmetry in the Landau–Ginzburg model, Algebr. Geom. 6 (2019) 260 | DOI

[14] T J Jarvis, T Kimura, A Vaintrob, Spin Gromov–Witten invariants, Comm. Math. Phys. 259 (2005) 511 | DOI

[15] Y H Kiem, J Li, Localizing virtual cycles by cosections, J. Amer. Math. Soc. 26 (2013) 1025 | DOI

[16] J Li, G Tian, Virtual moduli cycles and Gromov–Witten invariants of algebraic varieties, J. Amer. Math. Soc. 11 (1998) 119 | DOI

[17] M C Olsson, (Log) twisted curves, Compos. Math. 143 (2007) 476 | DOI

[18] E Witten, Phases of N = 2 theories in two dimensions, Nuclear Phys. B 403 (1993) 159 | DOI

[19] S Yamaguchi, S T Yau, Topological string partition functions as polynomials, J. High Energy Phys. 2004 (2004) | DOI

Cité par Sources :