Characteristic classes via 4–dimensional gauge theory
Geometry & topology, Tome 25 (2021) no. 2, pp. 711-773.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We construct characteristic classes of 4–manifold bundles using SO(3)–Yang–Mills theory and Seiberg–Witten theory for families.

DOI : 10.2140/gt.2021.25.711
Classification : 57R57, 55R40
Keywords: Yang–Mills equation, Seiberg–Witten equations, characteristic class

Konno, Hokuto 1

1 Graduate School of Mathematical Sciences, The University of Tokyo, Meguro, Tokyo, Japan
@article{GT_2021_25_2_a2,
     author = {Konno, Hokuto},
     title = {Characteristic classes via 4{\textendash}dimensional gauge theory},
     journal = {Geometry & topology},
     pages = {711--773},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2021},
     doi = {10.2140/gt.2021.25.711},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.711/}
}
TY  - JOUR
AU  - Konno, Hokuto
TI  - Characteristic classes via 4–dimensional gauge theory
JO  - Geometry & topology
PY  - 2021
SP  - 711
EP  - 773
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.711/
DO  - 10.2140/gt.2021.25.711
ID  - GT_2021_25_2_a2
ER  - 
%0 Journal Article
%A Konno, Hokuto
%T Characteristic classes via 4–dimensional gauge theory
%J Geometry & topology
%D 2021
%P 711-773
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.711/
%R 10.2140/gt.2021.25.711
%F GT_2021_25_2_a2
Konno, Hokuto. Characteristic classes via 4–dimensional gauge theory. Geometry & topology, Tome 25 (2021) no. 2, pp. 711-773. doi : 10.2140/gt.2021.25.711. http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.711/

[1] M Abouzaid, Family Floer cohomology and mirror symmetry, from: "Proceedings of the International Congress of Mathematicians, II" (editors S Y Jang, Y R Kim, D W Lee, I Yie), Kyung Moon Sa (2014) 813

[2] M Abouzaid, The family Floer functor is faithful, J. Eur. Math. Soc. 19 (2017) 2139 | DOI

[3] M F Atiyah, V K Patodi, I M Singer, Spectral asymmetry and Riemannian geometry, I, Math. Proc. Cambridge Philos. Soc. 77 (1975) 43 | DOI

[4] M F Atiyah, I M Singer, The index of elliptic operators, IV, Ann. of Math. 93 (1971) 119 | DOI

[5] D Baraglia, Obstructions to smooth group actions on 4–manifolds from families Seiberg–Witten theory, Adv. Math. 354 (2019) | DOI

[6] D Baraglia, H Konno, A gluing formula for families Seiberg–Witten invariants, Geom. Topol. 24 (2020) 1381 | DOI

[7] S Bauer, M Furuta, A stable cohomotopy refinement of Seiberg–Witten invariants, I, Invent. Math. 155 (2004) 1 | DOI

[8] O Buşe, Relative family Gromov–Witten invariants and symplectomorphisms, Pacific J. Math. 218 (2005) 315 | DOI

[9] S K Donaldson, Yang–Mills invariants of four-manifolds, from: "Geometry of low-dimensional manifolds, I" (editors S K Donaldson, C B Thomas), Lond. Math. Soc. Lect. Note Ser. 150, Cambridge Univ. Press (1990) 5

[10] S K Donaldson, The Seiberg–Witten equations and 4–manifold topology, Bull. Amer. Math. Soc. 33 (1996) 45 | DOI

[11] S K Donaldson, Floer homology groups in Yang–Mills theory, 147, Cambridge Univ. Press (2002) | DOI

[12] P M N Feehan, T G Leness, SO(3) monopoles, level-one Seiberg–Witten moduli spaces, and Witten’s conjecture in low degrees, Topology Appl. 124 (2002) 221 | DOI

[13] P M N Feehan, T G Leness, An SO(3)–monopole cobordism formula relating Donaldson and Seiberg–Witten invariants, 1226, Amer. Math. Soc. (2018) | DOI

[14] K Fukaya, Floer homology for families: a progress report, from: "Integrable systems, topology, and physics" (editors M Guest, R Miyaoka, Y Ohnita), Contemp. Math. 309, Amer. Math. Soc. (2002) 33 | DOI

[15] M Furuta, A remark on a fixed point of finite group action on S4, Topology 28 (1989) 35 | DOI

[16] B Hanke, D Kotschick, J Wehrheim, Dissolving four-manifolds and positive scalar curvature, Math. Z. 245 (2003) 545 | DOI

[17] A Hatcher, Algebraic topology, Cambridge Univ. Press (2002)

[18] M A Kervaire, Relative characteristic classes, Amer. J. Math. 79 (1957) 517 | DOI

[19] H Konno, Bounds on genus and configurations of embedded surfaces in 4–manifolds, J. Topol. 9 (2016) 1130 | DOI

[20] H Konno, A cohomological Seiberg–Witten invariant emerging from the adjunction inequality, preprint (2017)

[21] H Konno, Positive scalar curvature and higher-dimensional families of Seiberg–Witten equations, J. Topol. 12 (2019) 1246 | DOI

[22] A Kriegl, P W Michor, The convenient setting of global analysis, 53, Amer. Math. Soc. (1997) | DOI

[23] P B Kronheimer, Some non-trivial families of symplectic structures, preprint (1997)

[24] S Lang, Differential and Riemannian manifolds, 160, Springer (1995) | DOI

[25] H V Lê, K Ono, Parameterized Gromov–Witten invariants and topology of symplectomorphism groups, from: "Groups of diffeomorphisms" (editors R Penner, D Kotschick, T Tsuboi, N Kawazumi, T Kitano, Y Mitsumatsu), Adv. Stud. Pure Math. 52, Math. Soc. Japan (2008) 51 | DOI

[26] T J Li, A K Liu, Family Seiberg–Witten invariants and wall crossing formulas, Comm. Anal. Geom. 9 (2001) 777 | DOI

[27] J P May, A concise course in algebraic topology, Univ. Chicago Press (1999)

[28] D Mcduff, The symplectomorphism group of a blow up, Geom. Dedicata 132 (2008) 1 | DOI

[29] R B Melrose, The Atiyah–Patodi–Singer index theorem, 4, Peters (1993) | DOI

[30] E Y Miller, The homology of the mapping class group, J. Differential Geom. 24 (1986) 1 | DOI

[31] S Morita, Characteristic classes of surface bundles, Invent. Math. 90 (1987) 551 | DOI

[32] D Mumford, Towards an enumerative geometry of the moduli space of curves, from: "Arithmetic and geometry, II : Geometry" (editors M Artin, J Tate), Progr. Math. 36, Birkhäuser (1983) 271 | DOI

[33] N Nakamura, The Seiberg–Witten equations for families and diffeomorphisms of 4–manifolds, Asian J. Math. 7 (2003) 133 | DOI

[34] N Nakamura, Smoothability of Z × Z–actions on 4–manifolds, Proc. Amer. Math. Soc. 138 (2010) 2973 | DOI

[35] T Nishinou, Some nontrivial homology classes on the space of symplectic forms, J. Math. Kyoto Univ. 42 (2002) 599 | DOI

[36] J Park, The geography of Spin symplectic 4–manifolds, Math. Z. 240 (2002) 405 | DOI

[37] F Quinn, Isotopy of 4–manifolds, J. Differential Geom. 24 (1986) 343 | DOI

[38] Y Ruan, Virtual neighborhoods and the monopole equations, from: "Topics in symplectic –manifolds" (editor R J Stern), International (1998) 101

[39] D Ruberman, An obstruction to smooth isotopy in dimension 4, Math. Res. Lett. 5 (1998) 743 | DOI

[40] D Ruberman, A polynomial invariant of diffeomorphisms of 4–manifolds, from: "Proceedings of the Kirbyfest" (editors J Hass, M Scharlemann), Geom. Topol. Monogr. 2, Geom. Topol. (1999) 473 | DOI

[41] D Ruberman, Positive scalar curvature, diffeomorphisms and the Seiberg–Witten invariants, Geom. Topol. 5 (2001) 895 | DOI

[42] M Szymik, Characteristic cohomotopy classes for families of 4–manifolds, Forum Math. 22 (2010) 509 | DOI

[43] C T C Wall, On simply-connected 4–manifolds, J. Lond. Math. Soc. 39 (1964) 141 | DOI

Cité par Sources :