Mayer–Vietoris property for relative symplectic cohomology
Geometry & topology, Tome 25 (2021) no. 2, pp. 547-642.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We construct a Hamiltonian Floer theory-based invariant called relative symplectic cohomology, which assigns a module over the Novikov ring to compact subsets of closed symplectic manifolds. We show the existence of restriction maps, and prove some basic properties. Our main contribution is to identify natural geometric conditions in which relative symplectic cohomology of two subsets satisfies the Mayer–Vietoris property. These conditions involve certain integrability assumptions involving geometric objects called barriers — roughly, a 1–parameter family of rank 2 coisotropic submanifolds. The proof uses a deformation argument in which the topological energy zero (ie constant) Floer solutions are the main actors.

DOI : 10.2140/gt.2021.25.547
Classification : 53D40, 53D37, 81S10
Keywords: Floer theory, involutive systems, descent

Varolgunes, Umut 1

1 Department of Mathematics, Stanford University, Stanford, CA, United States
@article{GT_2021_25_2_a0,
     author = {Varolgunes, Umut},
     title = {Mayer{\textendash}Vietoris property for relative symplectic cohomology},
     journal = {Geometry & topology},
     pages = {547--642},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2021},
     doi = {10.2140/gt.2021.25.547},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.547/}
}
TY  - JOUR
AU  - Varolgunes, Umut
TI  - Mayer–Vietoris property for relative symplectic cohomology
JO  - Geometry & topology
PY  - 2021
SP  - 547
EP  - 642
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.547/
DO  - 10.2140/gt.2021.25.547
ID  - GT_2021_25_2_a0
ER  - 
%0 Journal Article
%A Varolgunes, Umut
%T Mayer–Vietoris property for relative symplectic cohomology
%J Geometry & topology
%D 2021
%P 547-642
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.547/
%R 10.2140/gt.2021.25.547
%F GT_2021_25_2_a0
Varolgunes, Umut. Mayer–Vietoris property for relative symplectic cohomology. Geometry & topology, Tome 25 (2021) no. 2, pp. 547-642. doi : 10.2140/gt.2021.25.547. http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.547/

[1] M Abouzaid, Symplectic cohomology and Viterbo’s theorem, from: "Free loop spaces in geometry and topology" (editors J Latschev, A Oancea), IRMA Lect. Math. Theor. Phys. 24, Eur. Math. Soc. (2015) 271 | DOI

[2] M Abouzaid, P Seidel, An open string analogue of Viterbo functoriality, Geom. Topol. 14 (2010) 627 | DOI

[3] R Abraham, J E Marsden, T S Ratiu, Manifolds, tensor analysis, and applications, 2, Addison-Wesley (1983)

[4] E Accinelli, E Covarrubias, An extension of the Sard–Smale theorem to convex domains with an empty interior, J. Math. Econom. 55 (2014) 123 | DOI

[5] M Audin, M Damian, Morse theory and Floer homology, Springer (2014) | DOI

[6] S Bosch, Lectures on formal and rigid geometry, 2105, Springer (2014) | DOI

[7] D Burghelea, S Haller, On the topology and analysis of a closed one form, I : Novikov’s theory revisited, from: "Essays on geometry and related topics, I" (editors É Ghys, P de la Harpe, V F R Jones, V Sergiescu, T Tsuboi), Monogr. Enseign. Math. 38, Enseign. Math. (2001) 133

[8] K Cieliebak, A Floer, H Hofer, Symplectic homology, II : A general construction, Math. Z. 218 (1995) 103 | DOI

[9] K Cieliebak, A Oancea, Symplectic homology and the Eilenberg–Steenrod axioms, Algebr. Geom. Topol. 18 (2018) 1953 | DOI

[10] R L Cohen, J D S Jones, G B Segal, Morse theory and classifying spaces, preprint (1995)

[11] R Datta, K E Smith, Frobenius and valuation rings, Algebra Number Theory 10 (2016) 1057 | DOI

[12] M Entov, L Polterovich, Quasi-states and symplectic intersections, Comment. Math. Helv. 81 (2006) 75 | DOI

[13] R Fintushel, R J Stern, Invariants for Lagrangian tori, Geom. Topol. 8 (2004) 947 | DOI

[14] A Floer, H Hofer, Coherent orientations for periodic orbit problems in symplectic geometry, Math. Z. 212 (1993) 13 | DOI

[15] A Floer, H Hofer, Symplectic homology, I : Open sets in Cn, Math. Z. 215 (1994) 37 | DOI

[16] S Ganatra, J Pardon, V Shende, Covariantly functorial wrapped Floer theory on Liouville sectors, Publ. Math. Inst. Hautes Études Sci. 131 (2020) 73 | DOI

[17] Y Groman, Floer theory and reduced cohomology on open manifolds, preprint (2015)

[18] H Hofer, D A Salamon, Floer homology and Novikov rings, from: "The Floer memorial volume" (editors H Hofer, C H Taubes, A Weinstein, E Zehnder), Progr. Math. 133, Birkhäuser (1995) 483 | DOI

[19] P B Kronheimer, T S Mrowka, Khovanov homology is an unknot-detector, Publ. Math. Inst. Hautes Études Sci. 113 (2011) 97 | DOI

[20] M Kunzinger, H Schichl, R Steinbauer, J A Vickers, Global Gronwall estimates for integral curves on Riemannian manifolds, Rev. Mat. Complut. 19 (2006) 133 | DOI

[21] F Laudenbach, Formes différentielles de degré 1 fermées non singulières : classes d’homotopie de leurs noyaux, Comment. Math. Helv. 51 (1976) 447 | DOI

[22] H B Lawson Jr., Foliations, Bull. Amer. Math. Soc. 80 (1974) 369 | DOI

[23] J M Lee, Introduction to smooth manifolds, 218, Springer (2013) | DOI

[24] R Lipshitz, S Sarkar, A Khovanov stable homotopy type, J. Amer. Math. Soc. 27 (2014) 983 | DOI

[25] V A Lunts, O M Schnürer, New enhancements of derived categories of coherent sheaves and applications, J. Algebra 446 (2016) 203 | DOI

[26] M Mclean, Birational Calabi–Yau manifolds have the same small quantum products, Ann. of Math. 191 (2020) 439 | DOI

[27] R B Melrose, Differential analysis on manifolds with corners, book project (1996)

[28] R S Palais, When proper maps are closed, Proc. Amer. Math. Soc. 24 (1970) 835 | DOI

[29] J Pardon, An algebraic approach to virtual fundamental cycles on moduli spaces of pseudo-holomorphic curves, Geom. Topol. 20 (2016) 779 | DOI

[30] J Pardon, Contact homology and virtual fundamental cycles, J. Amer. Math. Soc. 32 (2019) 825 | DOI

[31] L Qin, On moduli spaces and CW structures arising from Morse theory on Hilbert manifolds, J. Topol. Anal. 2 (2010) 469 | DOI

[32] D Salamon, Lectures on Floer homology, from: "Symplectic geometry and topology" (editors Y Eliashberg, L Traynor), IAS/Park City Math. Ser. 7, Amer. Math. Soc. (1999) 143 | DOI

[33] P Seidel, Some speculations on pairs-of-pants decompositions and Fukaya categories, from: "Surveys in differential geometry, XVII" (editors H D Cao, S T Yau), International (2012) 411 | DOI

[34] E M Stein, Singular integrals and differentiability properties of functions, 30, Princeton Univ. Press (1970)

[35] D Tischler, On fibering certain foliated manifolds over S1, Topology 9 (1970) 153 | DOI

[36] U Varolgunes, Mayer–Vietoris property for relative symplectic cohomology, PhD thesis, Massachusetts Institute of Technology (2018)

[37] S Venkatesh, Rabinowitz Floer homology and mirror symmetry, J. Topol. 11 (2018) 144 | DOI

[38] C Viterbo, Functors and computations in Floer homology with applications, I, Geom. Funct. Anal. 9 (1999) 985 | DOI

[39] C A Weibel, An introduction to homological algebra, 38, Cambridge Univ. Press (1994) | DOI

[40] H Whitney, On the extension of differentiable functions, Bull. Amer. Math. Soc. 50 (1944) 76 | DOI

[41] J A Yorke, Periods of periodic solutions and the Lipschitz constant, Proc. Amer. Math. Soc. 22 (1969) 509 | DOI

Cité par Sources :