Positive scalar curvature on manifolds with odd order abelian fundamental groups
Geometry & topology, Tome 25 (2021) no. 1, pp. 497-546.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We introduce Riemannian metrics of positive scalar curvature on manifolds with Baas–Sullivan singularities, prove a corresponding homology invariance principle and discuss admissible products.

Using this theory we construct positive scalar curvature metrics on closed smooth manifolds of dimension at least five which have odd order abelian fundamental groups, are nonspin and atoral. This solves the Gromov–Lawson–Rosenberg conjecture for a new class of manifolds with finite fundamental groups.

DOI : 10.2140/gt.2021.25.497
Classification : 53C21, 57R15, 55N20, 57T10
Keywords: manifolds with Baas–Sullivan singularities, positive scalar curvature, admissible products, group homology, Brown–Peterson homology

Hanke, Bernhard 1

1 Institut für Mathematik, Universität Augsburg, Augsburg, Germany
@article{GT_2021_25_1_a8,
     author = {Hanke, Bernhard},
     title = {Positive scalar curvature on manifolds with odd order abelian fundamental groups},
     journal = {Geometry & topology},
     pages = {497--546},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2021},
     doi = {10.2140/gt.2021.25.497},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.497/}
}
TY  - JOUR
AU  - Hanke, Bernhard
TI  - Positive scalar curvature on manifolds with odd order abelian fundamental groups
JO  - Geometry & topology
PY  - 2021
SP  - 497
EP  - 546
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.497/
DO  - 10.2140/gt.2021.25.497
ID  - GT_2021_25_1_a8
ER  - 
%0 Journal Article
%A Hanke, Bernhard
%T Positive scalar curvature on manifolds with odd order abelian fundamental groups
%J Geometry & topology
%D 2021
%P 497-546
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.497/
%R 10.2140/gt.2021.25.497
%F GT_2021_25_1_a8
Hanke, Bernhard. Positive scalar curvature on manifolds with odd order abelian fundamental groups. Geometry & topology, Tome 25 (2021) no. 1, pp. 497-546. doi : 10.2140/gt.2021.25.497. http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.497/

[1] N A Baas, On bordism theory of manifolds with singularities, Math. Scand. 33 (1973) 279 | DOI

[2] A L Besse, Einstein manifolds, 10, Springer (1987) | DOI

[3] B Botvinnik, Manifolds with singularities and the Adams–Novikov spectral sequence, 170, Cambridge Univ. Press (1992) | DOI

[4] B Botvinnik, Manifolds with singularities accepting a metric of positive scalar curvature, Geom. Topol. 5 (2001) 683 | DOI

[5] B Botvinnik, J Rosenberg, The Yamabe invariant for non-simply connected manifolds, J. Differential Geom. 62 (2002) 175 | DOI

[6] B Botvinnik, J Rosenberg, Positive scalar curvature for manifolds with elementary abelian fundamental group, Proc. Amer. Math. Soc. 133 (2005) 545 | DOI

[7] K S Brown, Cohomology of groups, 87, Springer (1982) | DOI

[8] U Bunke, Index theory, eta forms, and Deligne cohomology, 928, Amer. Math. Soc. (2009) | DOI

[9] S Eilenberg, S Mac Lane, On the groups H(Π,n), II : Methods of computation, Ann. of Math. 60 (1954) 49 | DOI

[10] S Führing, A smooth variation of Baas–Sullivan theory and positive scalar curvature, Math. Z. 274 (2013) 1029 | DOI

[11] M Gromov, H B Lawson Jr., The classification of simply connected manifolds of positive scalar curvature, Ann. of Math. 111 (1980) 423 | DOI

[12] B Hanke, Bordism of elementary abelian groups via inessential Brown–Peterson homology, J. Topol. 9 (2016) 725 | DOI

[13] B Hanke, D Kotschick, J Wehrheim, Dissolving four-manifolds and positive scalar curvature, Math. Z. 245 (2003) 545 | DOI

[14] D C Johnson, W S Wilson, The Brown–Peterson homology of elementary p–groups, Amer. J. Math. 107 (1985) 427 | DOI

[15] D Joyce, A generalization of manifolds with corners, Adv. Math. 299 (2016) 760

[16] S Kwasik, R Schultz, Positive scalar curvature and periodic fundamental groups, Comment. Math. Helv. 65 (1990) 271

[17] J Milnor, On the cobordism ring Ω∗ and a complex analogue, I, Amer. J. Math. 82 (1960) 505 | DOI

[18] O K Mironov, Existence of multiplicative structures in the theory of cobordism with singularities, Izv. Akad. Nauk SSSR Ser. Mat. 39 (1975) 1065

[19] S A Mitchell, A proof of the Conner–Floyd conjecture, Amer. J. Math. 106 (1984) 889 | DOI

[20] J Morava, A product for the odd-primary bordism of manifolds with singularities, Topology 18 (1979) 177 | DOI

[21] S P Novikov, Some problems in the topology of manifolds connected with the theory of Thom spaces, Dokl. Akad. Nauk SSSR 132 (1960) 1031

[22] D C Ravenel, W S Wilson, The Morava K–theories of Eilenberg–Mac Lane spaces and the Conner–Floyd conjecture, Amer. J. Math. 102 (1980) 691 | DOI

[23] J Rosenberg, C∗–algebras, positive scalar curvature, and the Novikov conjecture, III, Topology 25 (1986) 319 | DOI

[24] J Rosenberg, Manifolds of positive scalar curvature: a progress report, from: "Metric and comparison geometry" (editors J Cheeger, K Grove), Surv. Differ. Geom. 11, International (2007) 259 | DOI

[25] J Rosenberg, S Stolz, Metrics of positive scalar curvature and connections with surgery, from: "Surveys on surgery theory, II" (editors S Cappell, A Ranicki, J Rosenberg), Ann. of Math. Stud. 149, Princeton Univ. Press (2001) 353

[26] R Schoen, S T Yau, On the structure of manifolds with positive scalar curvature, Manuscripta Math. 28 (1979) 159 | DOI

[27] N Shimada, N Yagita, Multiplications in the complex bordism theory with singularities, Publ. Res. Inst. Math. Sci. 12 (1976) 259 | DOI

[28] S Stolz, Positive scalar curvature metrics: existence and classification questions, from: "Proceedings of the International Congress of Mathematicians, I" (editor S D Chatterji), Birkhäuser (1995) 625

[29] R Thom, Quelques propriétés globales des variétés différentiables, Comment. Math. Helv. 28 (1954) 17

Cité par Sources :