A vanishing theorem for tautological classes of aspherical manifolds
Geometry & topology, Tome 25 (2021) no. 1, pp. 47-110.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Tautological classes, or generalised Miller–Morita–Mumford classes, are basic characteristic classes of smooth fibre bundles, and have recently been used to describe the rational cohomology of classifying spaces of diffeomorphism groups for several types of manifolds. We show that rationally tautological classes depend only on the underlying topological block bundle, and use this to prove the vanishing of tautological classes for many bundles with fibre an aspherical manifold.

DOI : 10.2140/gt.2021.25.47
Classification : 55R20, 55R40, 55R60, 57P10
Keywords: aspherical closed manifolds, tautological classes, characteristic classes, manifold bundles, Burghelea's conjecture

Hebestreit, Fabian 1 ; Land, Markus 2 ; Lück, Wolfgang 1 ; Randal-Williams, Oscar 3

1 Mathematical Institute, University of Bonn, Bonn, Germany
2 Department of Mathematical Sciences, University of Copenhagen, Copenhagen, Denmark
3 Centre for Mathematical Sciences, University of Cambridge, Cambridge, United Kingdom
@article{GT_2021_25_1_a1,
     author = {Hebestreit, Fabian and Land, Markus and L\"uck, Wolfgang and Randal-Williams, Oscar},
     title = {A vanishing theorem for tautological classes of aspherical manifolds},
     journal = {Geometry & topology},
     pages = {47--110},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2021},
     doi = {10.2140/gt.2021.25.47},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.47/}
}
TY  - JOUR
AU  - Hebestreit, Fabian
AU  - Land, Markus
AU  - Lück, Wolfgang
AU  - Randal-Williams, Oscar
TI  - A vanishing theorem for tautological classes of aspherical manifolds
JO  - Geometry & topology
PY  - 2021
SP  - 47
EP  - 110
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.47/
DO  - 10.2140/gt.2021.25.47
ID  - GT_2021_25_1_a1
ER  - 
%0 Journal Article
%A Hebestreit, Fabian
%A Land, Markus
%A Lück, Wolfgang
%A Randal-Williams, Oscar
%T A vanishing theorem for tautological classes of aspherical manifolds
%J Geometry & topology
%D 2021
%P 47-110
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.47/
%R 10.2140/gt.2021.25.47
%F GT_2021_25_1_a1
Hebestreit, Fabian; Land, Markus; Lück, Wolfgang; Randal-Williams, Oscar. A vanishing theorem for tautological classes of aspherical manifolds. Geometry & topology, Tome 25 (2021) no. 1, pp. 47-110. doi : 10.2140/gt.2021.25.47. http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.47/

[1] A Bartels, F T Farrell, W Lück, The Farrell–Jones conjecture for cocompact lattices in virtually connected Lie groups, J. Amer. Math. Soc. 27 (2014) 339 | DOI

[2] A Bartels, W Lück, On crossed product rings with twisted involutions, their module categories and L–theory, from: "Cohomology of groups and algebraic –theory" (editors L Ji, K Liu, S T Yau), Adv. Lect. Math. 12, International (2010) 1

[3] A Bartels, W Lück, The Borel conjecture for hyperbolic and CAT(0)–groups, Ann. of Math. 175 (2012) 631 | DOI

[4] A Bartels, W Lück, H Reich, The K–theoretic Farrell–Jones conjecture for hyperbolic groups, Invent. Math. 172 (2008) 29 | DOI

[5] A Bartels, W Lück, H Reich, On the Farrell–Jones conjecture and its applications, J. Topol. 1 (2008) 57 | DOI

[6] A Bartels, H Reich, Coefficients for the Farrell–Jones conjecture, Adv. Math. 209 (2007) 337 | DOI

[7] O Baues, F Grunewald, Automorphism groups of polycyclic-by-finite groups and arithmetic groups, Publ. Math. Inst. Hautes Études Sci. 104 (2006) 213 | DOI

[8] A Berglund, I Madsen, Rational homotopy theory of automorphisms of manifolds, Acta Math. 224 (2020) 67 | DOI

[9] A Borel, Cohomology of arithmetic groups, from: "Proceedings of the International Congress of Mathematicians, I" (editor R D James) (1975) 435

[10] A Borel, F Hirzebruch, Characteristic classes and homogeneous spaces, I, Amer. J. Math. 80 (1958) 458 | DOI

[11] M R Bridson, A Haefliger, Metric spaces of non-positive curvature, 319, Springer (1999) | DOI

[12] M R Bridson, P H Kropholler, Dimension of elementary amenable groups, J. Reine Angew. Math. 699 (2015) 217 | DOI

[13] K S Brown, Cohomology of groups, 87, Springer (1982) | DOI

[14] D Burghelea, The cyclic homology of the group rings, Comment. Math. Helv. 60 (1985) 354 | DOI

[15] D Burghelea, R Lashof, M Rothenberg, Groups of automorphisms of manifolds, 473, Springer (1975) | DOI

[16] M Bustamante, F T Farrell, Y Jiang, Rigidity and characteristic classes of smooth bundles with nonpositively curved fibers, J. Topol. 9 (2016) 934 | DOI

[17] S E Cappell, Unitary nilpotent groups and Hermitian K–theory, I, Bull. Amer. Math. Soc. 80 (1974) 1117 | DOI

[18] S Cappell, S Weinberger, M Yan, Closed aspherical manifolds with center, J. Topol. 6 (2013) 1009 | DOI

[19] A Casson, D H Gottlieb, Fibrations with compact fibres, Amer. J. Math. 99 (1977) 159 | DOI

[20] A Casson, D Jungreis, Convergence groups and Seifert fibered 3–manifolds, Invent. Math. 118 (1994) 441 | DOI

[21] S R Costenoble, S Waner, Equivariant ordinary homology and cohomology, 2178, Springer (2016) | DOI

[22] C J Earle, J Eells, A fibre bundle description of Teichmüller theory, J. Differential Geom. 3 (1969) 19 | DOI

[23] J Ebert, A vanishing theorem for characteristic classes of odd-dimensional manifold bundles, J. Reine Angew. Math. 684 (2013) 1 | DOI

[24] J Ebert, O Randal-Williams, Generalised Miller–Morita–Mumford classes for block bundles and topological bundles, Algebr. Geom. Topol. 14 (2014) 1181 | DOI

[25] B Eckmann, Cyclic homology of groups and the Bass conjecture, Comment. Math. Helv. 61 (1986) 193 | DOI

[26] A Engel, M Marcinkowski, Burghelea conjecture and asymptotic dimension of groups, J. Topol. Anal. 12 (2020) 321 | DOI

[27] N E Enkelmann, W Lück, M Pieper, M Ullmann, C Winges, On the Farrell–Jones conjecture for Waldhausen’s A–theory, Geom. Topol. 22 (2018) 3321 | DOI

[28] C Faber, A conjectural description of the tautological ring of the moduli space of curves, from: "Moduli of curves and abelian varieties" (editors C Faber, E Looijenga), Aspects Math. E33, Vieweg (1999) 109 | DOI

[29] F T Farrell, W C Hsiang, On the rational homotopy groups of the diffeomorphism groups of discs, spheres and aspherical manifolds, from: "Algebraic and geometric topology, I" (editor R J Milgram), Proc. Sympos. Pure Math. 32, Amer. Math. Soc. (1978) 325 | DOI

[30] F T Farrell, L E Jones, Rigidity and other topological aspects of compact nonpositively curved manifolds, Bull. Amer. Math. Soc. 22 (1990) 59 | DOI

[31] F T Farrell, L E Jones, The lower algebraic K–theory of virtually infinite cyclic groups, –Theory 9 (1995) 13 | DOI

[32] M H Freedman, The disk theorem for four-dimensional manifolds, from: "Proceedings of the International Congress of Mathematicians, I" (editors Z Ciesielski, C Olech), PWN (1984) 647

[33] M H Freedman, F Quinn, Topology of 4–manifolds, 39, Princeton Univ. Press (1990)

[34] M H Freedman, P Teichner, 4–manifold topology, I : Subexponential groups, Invent. Math. 122 (1995) 509 | DOI

[35] D Gabai, Convergence groups are Fuchsian groups, Ann. of Math. 136 (1992) 447 | DOI

[36] S Galatius, I Grigoriev, O Randal-Williams, Tautological rings for high-dimensional manifolds, Compos. Math. 153 (2017) 851 | DOI

[37] S Galatius, I Madsen, U Tillmann, Divisibility of the stable Miller–Morita–Mumford classes, J. Amer. Math. Soc. 19 (2006) 759 | DOI

[38] S Galatius, O Randal-Williams, Stable moduli spaces of high-dimensional manifolds, Acta Math. 212 (2014) 257 | DOI

[39] S Galatius, O Randal-Williams, Homological stability for moduli spaces of high dimensional manifolds, II, Ann. of Math. 186 (2017) 127 | DOI

[40] S Galatius, O Randal-Williams, Homological stability for moduli spaces of high dimensional manifolds, I, J. Amer. Math. Soc. 31 (2018) 215 | DOI

[41] D H Gottlieb, A certain subgroup of the fundamental group, Amer. J. Math. 87 (1965) 840 | DOI

[42] D H Gottlieb, Poincaré duality and fibrations, Proc. Amer. Math. Soc. 76 (1979) 148 | DOI

[43] M Gromov, Groups of polynomial growth and expanding maps, Inst. Hautes Études Sci. Publ. Math. 53 (1981) 53 | DOI

[44] M Gromov, Hyperbolic groups, from: "Essays in group theory" (editor S M Gersten), Math. Sci. Res. Inst. Publ. 8, Springer (1987) 75 | DOI

[45] P Holm, The microbundle representation theorem, Acta Math. 117 (1967) 191 | DOI

[46] R Ji, Nilpotency of Connes’ periodicity operator and the idempotent conjectures, –Theory 9 (1995) 59 | DOI

[47] H Kammeyer, W Lück, H Rüping, The Farrell–Jones conjecture for arbitrary lattices in virtually connected Lie groups, Geom. Topol. 20 (2016) 1275 | DOI

[48] R C Kirby, L C Siebenmann, Foundational essays on topological manifolds, smoothings, and triangulations, 88, Princeton Univ. Press (1977) | DOI

[49] J M Kister, Microbundles are fibre bundles, Ann. of Math. 80 (1964) 190 | DOI

[50] N H Kuiper, R K Lashof, Microbundles and bundles, I : Elementary theory, Invent. Math. 1 (1966) 1 | DOI

[51] E Looijenga, On the tautological ring of Mg, Invent. Math. 121 (1995) 411 | DOI

[52] W Lück, Isomorphism conjectures in K– and L–theory, book project (2021)

[53] W Lück, H Reich, The Baum–Connes and the Farrell–Jones conjectures in K– and L–theory, from: "Handbook of –theory, II" (editors E M Friedlander, D R Grayson), Springer (2005) 703 | DOI

[54] I Madsen, U Tillmann, The stable mapping class group and Q(CP+∞), Invent. Math. 145 (2001) 509 | DOI

[55] I Madsen, M Weiss, The stable moduli space of Riemann surfaces : Mumford’s conjecture, Ann. of Math. 165 (2007) 843 | DOI

[56] M Mather, Pull-backs in homotopy theory, Canad. J. Math. 28 (1976) 225 | DOI

[57] J P May, J Sigurdsson, Parametrized homotopy theory, 132, Amer. Math. Soc. (2006) | DOI

[58] E Y Miller, The homology of the mapping class group, J. Differential Geom. 24 (1986) 1 | DOI

[59] S Morita, Characteristic classes of surface bundles, Bull. Amer. Math. Soc. 11 (1984) 386 | DOI

[60] D Mumford, Towards an enumerative geometry of the moduli space of curves, from: "Arithmetic and geometry, II" (editors M Artin, J Tate), Progr. Math. 36, Birkhäuser (1983) 271 | DOI

[61] C Neofytidis, Fundamental groups of aspherical manifolds and maps of non-zero degree, Groups Geom. Dyn. 12 (2018) 637 | DOI

[62] P Ontaneda, Riemannian hyperbolization, Publ. Math. Inst. Hautes Études Sci. 131 (2020) 1 | DOI

[63] O Randal-Williams, An upper bound for the pseudoisotopy stable range, Math. Ann. 368 (2017) 1081 | DOI

[64] A A Ranicki, Algebraic L–theory, III : Twisted Laurent extensions, from: "Algebraic –theory, III : Hermitian –theory and geometric application" (editor H Bass), Lecture Notes in Math. 343 (1973) 412 | DOI

[65] A A Ranicki, Algebraic L–theory and topological manifolds, 102, Cambridge Univ. Press (1992)

[66] H Reich, M Varisco, Algebraic K–theory, assembly maps, controlled algebra, and trace methods, from: "Space, time, matter" (editors J Brüning, M Staudacher), de Gruyter (2018) 1 | DOI

[67] D J S Robinson, A course in the theory of groups, 80, Springer (1996) | DOI

[68] H Rüping, The Farrell–Jones conjecture for S–arithmetic groups, J. Topol. 9 (2016) 51 | DOI

[69] M S Weiss, Dalian notes on rational Pontryagin classes, preprint (2015)

[70] M Weiss, B Williams, Automorphisms of manifolds and algebraic K–theory, II, J. Pure Appl. Algebra 62 (1989) 47 | DOI

Cité par Sources :