On the topology and the boundary of N–dimensional RCD(K,N) spaces
Geometry & topology, Tome 25 (2021) no. 1, pp. 445-495.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We establish topological regularity and stability of N–dimensional RCD(K,N) spaces (up to a small singular set), also called noncollapsed RCD(K,N) in the literature. We also introduce the notion of a boundary of such spaces and study its properties, including its behavior under Gromov–Hausdorff convergence.

DOI : 10.2140/gt.2021.25.445
Classification : 53C23, 53C21
Keywords: Ricci curvature, optimal transport, metric measure spaces

Kapovitch, Vitali 1 ; Mondino, Andrea 2

1 Department of Mathematics, University of Toronto, Toronto, ON, Canada
2 Mathematical Institute, University of Oxford, Oxford, United Kingdom
@article{GT_2021_25_1_a7,
     author = {Kapovitch, Vitali and Mondino, Andrea},
     title = {On the topology and the boundary of {N{\textendash}dimensional} {RCD(K,N)} spaces},
     journal = {Geometry & topology},
     pages = {445--495},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2021},
     doi = {10.2140/gt.2021.25.445},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.445/}
}
TY  - JOUR
AU  - Kapovitch, Vitali
AU  - Mondino, Andrea
TI  - On the topology and the boundary of N–dimensional RCD(K,N) spaces
JO  - Geometry & topology
PY  - 2021
SP  - 445
EP  - 495
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.445/
DO  - 10.2140/gt.2021.25.445
ID  - GT_2021_25_1_a7
ER  - 
%0 Journal Article
%A Kapovitch, Vitali
%A Mondino, Andrea
%T On the topology and the boundary of N–dimensional RCD(K,N) spaces
%J Geometry & topology
%D 2021
%P 445-495
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.445/
%R 10.2140/gt.2021.25.445
%F GT_2021_25_1_a7
Kapovitch, Vitali; Mondino, Andrea. On the topology and the boundary of N–dimensional RCD(K,N) spaces. Geometry & topology, Tome 25 (2021) no. 1, pp. 445-495. doi : 10.2140/gt.2021.25.445. http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.445/

[1] L Ambrosio, Calculus, heat flow and curvature-dimension bounds in metric measure spaces, from: "Proceedings of the International Congress of Mathematicians, I" (editors B Sirakov, P N de Souza, M Viana), World Sci. (2018) 301

[2] L Ambrosio, N Gigli, A Mondino, T Rajala, Riemannian Ricci curvature lower bounds in metric measure spaces with σ–finite measure, Trans. Amer. Math. Soc. 367 (2015) 4661 | DOI

[3] L Ambrosio, N Gigli, G Savaré, Metric measure spaces with Riemannian Ricci curvature bounded from below, Duke Math. J. 163 (2014) 1405 | DOI

[4] L Ambrosio, S Honda, J W Portegies, D Tewodrose, Embedding of RCD∗(K,N) spaces in L2 via eigenfunctions, preprint (2018)

[5] L Ambrosio, A Mondino, G Savaré, Nonlinear diffusion equations and curvature conditions in metric measure spaces, 1270, Amer. Math. Soc. (2019) | DOI

[6] G Antonelli, E Brué, D Semola, Volume bounds for the quantitative singular strata of non collapsed RCD metric measure spaces, Anal. Geom. Metr. Spaces 7 (2019) 158 | DOI

[7] K Bacher, K T Sturm, Localization and tensorization properties of the curvature-dimension condition for metric measure spaces, J. Funct. Anal. 259 (2010) 28 | DOI

[8] D Barilari, L Rizzi, Sharp measure contraction property for generalized H–type Carnot groups, Commun. Contemp. Math. 20 (2018) | DOI

[9] J Bertrand, Pincement spectral en courbure de Ricci positive, Comment. Math. Helv. 82 (2007) 323 | DOI

[10] S Bianchini, F Cavalletti, The Monge problem for distance cost in geodesic spaces, Comm. Math. Phys. 318 (2013) 615 | DOI

[11] E Brué, D Semola, Constancy of the dimension for RCD(K,N) spaces via regularity of Lagrangian flows, Comm. Pure Appl. Math. 73 (2020) 1141 | DOI

[12] F Cavalletti, Monge problem in metric measure spaces with Riemannian curvature-dimension condition, Nonlinear Anal. 99 (2014) 136 | DOI

[13] F Cavalletti, E Milman, The globalization theorem for the curvature dimension condition, preprint (2016)

[14] F Cavalletti, A Mondino, Measure rigidity of Ricci curvature lower bounds, Adv. Math. 286 (2016) 430 | DOI

[15] F Cavalletti, A Mondino, Optimal maps in essentially non-branching spaces, Commun. Contemp. Math. 19 (2017) | DOI

[16] F Cavalletti, A Mondino, New formulas for the Laplacian of distance functions and applications, Anal. PDE 13 (2020) 2091 | DOI

[17] J Cheeger, T H Colding, On the structure of spaces with Ricci curvature bounded below, I, J. Differential Geom. 46 (1997) 406 | DOI

[18] J Cheeger, T H Colding, On the structure of spaces with Ricci curvature bounded below, II, J. Differential Geom. 54 (2000) 13 | DOI

[19] J Cheeger, T H Colding, On the structure of spaces with Ricci curvature bounded below, III, J. Differential Geom. 54 (2000) 37 | DOI

[20] J Cheeger, W Jiang, A Naber, Rectifiability of singular sets in noncollapsed spaces with Ricci curvature bounded below, preprint (2018)

[21] J Cheeger, A Naber, Lower bounds on Ricci curvature and quantitative behavior of singular sets, Invent. Math. 191 (2013) 321 | DOI

[22] J Cheeger, A Naber, Regularity of Einstein manifolds and the codimension 4 conjecture, Ann. of Math. 182 (2015) 1093 | DOI

[23] T H Colding, Large manifolds with positive Ricci curvature, Invent. Math. 124 (1996) 193 | DOI

[24] T H Colding, Shape of manifolds with positive Ricci curvature, Invent. Math. 124 (1996) 175 | DOI

[25] T H Colding, Ricci curvature and volume convergence, Ann. of Math. 145 (1997) 477 | DOI

[26] G De Philippis, N Gigli, Non-collapsed spaces with Ricci curvature bounded from below, J. Éc. Polytech. Math. 5 (2018) 613 | DOI

[27] G De Philippis, A Marchese, F Rindler, On a conjecture of Cheeger, from: "Measure theory in non-smooth spaces" (editor N Gigli), de Gruyter (2017) 145 | DOI

[28] S Donaldson, S Sun, Gromov–Hausdorff limits of Kähler manifolds and algebraic geometry, II, J. Differential Geom. 107 (2017) 327 | DOI

[29] M Erbar, K Kuwada, K T Sturm, On the equivalence of the entropic curvature-dimension condition and Bochner’s inequality on metric measure spaces, Invent. Math. 201 (2015) 993 | DOI

[30] M Erbar, K T Sturm, Rigidity of cones with bounded Ricci curvature, J. Eur. Math. Soc. 23 (2021) 219 | DOI

[31] F Galaz-García, M Kell, A Mondino, G Sosa, On quotients of spaces with Ricci curvature bounded below, J. Funct. Anal. 275 (2018) 1368 | DOI

[32] N Gigli, An overview of the proof of the splitting theorem in spaces with non-negative Ricci curvature, Anal. Geom. Metr. Spaces 2 (2014) 169 | DOI

[33] N Gigli, On the differential structure of metric measure spaces and applications, 1113, Amer. Math. Soc. (2015) | DOI

[34] N Gigli, A Mondino, G Savaré, Convergence of pointed non-compact metric measure spaces and stability of Ricci curvature bounds and heat flows, Proc. Lond. Math. Soc. 111 (2015) 1071 | DOI

[35] N Gigli, E Pasqualetto, Behaviour of the reference measure on RCD spaces under charts, preprint (2016)

[36] B X Han, Measure rigidity of synthetic lower Ricci curvature bound on Riemannian manifolds, Adv. Math. 373 (2020) | DOI

[37] S Honda, New differential operator and noncollapsed RCD spaces, Geom. Topol. 24 (2020) 2127 | DOI

[38] S Honda, I Mondello, Sphere theorems for RCD and stratified spaces, preprint (2019)

[39] N Juillet, Geometric inequalities and generalized Ricci bounds in the Heisenberg group, Int. Math. Res. Not. 2009 (2009) 2347 | DOI

[40] V Kapovitch, Perelman’s stability theorem, from: "Surveys in differential geometry, XI" (editors J Cheeger, K Grove), International (2007) 103 | DOI

[41] V Kapovitch, C Ketterer, CD meets CAT, J. Reine Angew. Math. 766 (2020) 1 | DOI

[42] V Kapovitch, A Lytchak, A Petrunin, Metric-measure boundary and geodesic flow on Alexandrov spaces, J. Eur. Math. Soc. 23 (2021) 29 | DOI

[43] M Kell, A Mondino, On the volume measure of non-smooth spaces with Ricci curvature bounded below, Ann. Sc. Norm. Super. Pisa Cl. Sci. 18 (2018) 593 | DOI

[44] C Ketterer, Cones over metric measure spaces and the maximal diameter theorem, J. Math. Pures Appl. 103 (2015) 1228 | DOI

[45] C Ketterer, Obata’s rigidity theorem for metric measure spaces, Anal. Geom. Metr. Spaces 3 (2015) 278 | DOI

[46] R C Kirby, L C Siebenmann, Foundational essays on topological manifolds, smoothings, and triangulations, 88, Princeton Univ. Press (1977)

[47] Y Kitabeppu, A Bishop-type inequality on metric measure spaces with Ricci curvature bounded below, Proc. Amer. Math. Soc. 145 (2017) 3137 | DOI

[48] Y Kitabeppu, A sufficient condition to a regular set being of positive measure on RCD spaces, Potential Anal. 51 (2019) 179 | DOI

[49] Y Kitabeppu, S Lakzian, Characterization of low dimensional RCD∗(K,N) spaces, Anal. Geom. Metr. Spaces 4 (2016) 187 | DOI

[50] J Lott, C Villani, Ricci curvature for metric-measure spaces via optimal transport, Ann. of Math. 169 (2009) 903 | DOI

[51] A Lytchak, S Stadler, Ricci curvature in dimension 2, preprint (2018)

[52] A Mondino, A Naber, Structure theory of metric measure spaces with lower Ricci curvature bounds, J. Eur. Math. Soc. 21 (2019) 1809 | DOI

[53] S I Ohta, On the measure contraction property of metric measure spaces, Comment. Math. Helv. 82 (2007) 805 | DOI

[54] S I Ohta, Finsler interpolation inequalities, Calc. Var. Partial Differential Equations 36 (2009) 211 | DOI

[55] G Perelman, Alexandrov’s spaces with curvatures bounded from below, II, preprint (1991)

[56] P Petersen, On eigenvalue pinching in positive Ricci curvature, Invent. Math. 138 (1999) 1 | DOI

[57] A Petrunin, Parallel transportation for Alexandrov space with curvature bounded below, Geom. Funct. Anal. 8 (1998) 123 | DOI

[58] A Petrunin, Alexandrov meets Lott–Villani–Sturm, Münster J. Math. 4 (2011) 53

[59] F Quinn, Ends of maps, III : Dimensions 4 and 5, J. Differential Geom. 17 (1982) 503 | DOI

[60] T Rajala, K T Sturm, Non-branching geodesics and optimal maps in strong CD(K,∞)–spaces, Calc. Var. Partial Differential Equations 50 (2014) 831 | DOI

[61] L Rifford, Ricci curvatures in Carnot groups, Math. Control Relat. Fields 3 (2013) 467 | DOI

[62] L Rizzi, Measure contraction properties of Carnot groups, Calc. Var. Partial Differential Equations 55 (2016) | DOI

[63] L C Siebenmann, Deformation of homeomorphisms on stratified sets, Comment. Math. Helv. 47 (1972) 123 | DOI

[64] M Simon, Ricci flow of non-collapsed three manifolds whose Ricci curvature is bounded from below, J. Reine Angew. Math. 662 (2012) 59 | DOI

[65] M Simon, P M Topping, Local mollification of Riemannian metrics using Ricci flow, and Ricci limit spaces, preprint (2017)

[66] K T Sturm, On the geometry of metric measure spaces, I, Acta Math. 196 (2006) 65 | DOI

[67] K T Sturm, On the geometry of metric measure spaces, II, Acta Math. 196 (2006) 133 | DOI

[68] C Villani, Optimal transport: old and new, 338, Springer (2009) | DOI

[69] C Villani, Inégalités isopérimétriques dans les espaces métriques mesurés (d’après F Cavalletti A Mondino), from: "Séminaire Bourbaki, 2016/2017", Astérisque 407, Soc. Math. France (2019) 213 | DOI

[70] J Wong, An extension procedure for manifolds with boundary, Pacific J. Math. 235 (2008) 173 | DOI

Cité par Sources :