Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We establish topological regularity and stability of –dimensional spaces (up to a small singular set), also called noncollapsed in the literature. We also introduce the notion of a boundary of such spaces and study its properties, including its behavior under Gromov–Hausdorff convergence.
Kapovitch, Vitali 1 ; Mondino, Andrea 2
@article{GT_2021_25_1_a7, author = {Kapovitch, Vitali and Mondino, Andrea}, title = {On the topology and the boundary of {N{\textendash}dimensional} {RCD(K,N)} spaces}, journal = {Geometry & topology}, pages = {445--495}, publisher = {mathdoc}, volume = {25}, number = {1}, year = {2021}, doi = {10.2140/gt.2021.25.445}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.445/} }
TY - JOUR AU - Kapovitch, Vitali AU - Mondino, Andrea TI - On the topology and the boundary of N–dimensional RCD(K,N) spaces JO - Geometry & topology PY - 2021 SP - 445 EP - 495 VL - 25 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.445/ DO - 10.2140/gt.2021.25.445 ID - GT_2021_25_1_a7 ER -
Kapovitch, Vitali; Mondino, Andrea. On the topology and the boundary of N–dimensional RCD(K,N) spaces. Geometry & topology, Tome 25 (2021) no. 1, pp. 445-495. doi : 10.2140/gt.2021.25.445. http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.445/
[1] Calculus, heat flow and curvature-dimension bounds in metric measure spaces, from: "Proceedings of the International Congress of Mathematicians, I" (editors B Sirakov, P N de Souza, M Viana), World Sci. (2018) 301
,[2] Riemannian Ricci curvature lower bounds in metric measure spaces with σ–finite measure, Trans. Amer. Math. Soc. 367 (2015) 4661 | DOI
, , , ,[3] Metric measure spaces with Riemannian Ricci curvature bounded from below, Duke Math. J. 163 (2014) 1405 | DOI
, , ,[4] Embedding of RCD∗(K,N) spaces in L2 via eigenfunctions, preprint (2018)
, , , ,[5] Nonlinear diffusion equations and curvature conditions in metric measure spaces, 1270, Amer. Math. Soc. (2019) | DOI
, , ,[6] Volume bounds for the quantitative singular strata of non collapsed RCD metric measure spaces, Anal. Geom. Metr. Spaces 7 (2019) 158 | DOI
, , ,[7] Localization and tensorization properties of the curvature-dimension condition for metric measure spaces, J. Funct. Anal. 259 (2010) 28 | DOI
, ,[8] Sharp measure contraction property for generalized H–type Carnot groups, Commun. Contemp. Math. 20 (2018) | DOI
, ,[9] Pincement spectral en courbure de Ricci positive, Comment. Math. Helv. 82 (2007) 323 | DOI
,[10] The Monge problem for distance cost in geodesic spaces, Comm. Math. Phys. 318 (2013) 615 | DOI
, ,[11] Constancy of the dimension for RCD(K,N) spaces via regularity of Lagrangian flows, Comm. Pure Appl. Math. 73 (2020) 1141 | DOI
, ,[12] Monge problem in metric measure spaces with Riemannian curvature-dimension condition, Nonlinear Anal. 99 (2014) 136 | DOI
,[13] The globalization theorem for the curvature dimension condition, preprint (2016)
, ,[14] Measure rigidity of Ricci curvature lower bounds, Adv. Math. 286 (2016) 430 | DOI
, ,[15] Optimal maps in essentially non-branching spaces, Commun. Contemp. Math. 19 (2017) | DOI
, ,[16] New formulas for the Laplacian of distance functions and applications, Anal. PDE 13 (2020) 2091 | DOI
, ,[17] On the structure of spaces with Ricci curvature bounded below, I, J. Differential Geom. 46 (1997) 406 | DOI
, ,[18] On the structure of spaces with Ricci curvature bounded below, II, J. Differential Geom. 54 (2000) 13 | DOI
, ,[19] On the structure of spaces with Ricci curvature bounded below, III, J. Differential Geom. 54 (2000) 37 | DOI
, ,[20] Rectifiability of singular sets in noncollapsed spaces with Ricci curvature bounded below, preprint (2018)
, , ,[21] Lower bounds on Ricci curvature and quantitative behavior of singular sets, Invent. Math. 191 (2013) 321 | DOI
, ,[22] Regularity of Einstein manifolds and the codimension 4 conjecture, Ann. of Math. 182 (2015) 1093 | DOI
, ,[23] Large manifolds with positive Ricci curvature, Invent. Math. 124 (1996) 193 | DOI
,[24] Shape of manifolds with positive Ricci curvature, Invent. Math. 124 (1996) 175 | DOI
,[25] Ricci curvature and volume convergence, Ann. of Math. 145 (1997) 477 | DOI
,[26] Non-collapsed spaces with Ricci curvature bounded from below, J. Éc. Polytech. Math. 5 (2018) 613 | DOI
, ,[27] On a conjecture of Cheeger, from: "Measure theory in non-smooth spaces" (editor N Gigli), de Gruyter (2017) 145 | DOI
, , ,[28] Gromov–Hausdorff limits of Kähler manifolds and algebraic geometry, II, J. Differential Geom. 107 (2017) 327 | DOI
, ,[29] On the equivalence of the entropic curvature-dimension condition and Bochner’s inequality on metric measure spaces, Invent. Math. 201 (2015) 993 | DOI
, , ,[30] Rigidity of cones with bounded Ricci curvature, J. Eur. Math. Soc. 23 (2021) 219 | DOI
, ,[31] On quotients of spaces with Ricci curvature bounded below, J. Funct. Anal. 275 (2018) 1368 | DOI
, , , ,[32] An overview of the proof of the splitting theorem in spaces with non-negative Ricci curvature, Anal. Geom. Metr. Spaces 2 (2014) 169 | DOI
,[33] On the differential structure of metric measure spaces and applications, 1113, Amer. Math. Soc. (2015) | DOI
,[34] Convergence of pointed non-compact metric measure spaces and stability of Ricci curvature bounds and heat flows, Proc. Lond. Math. Soc. 111 (2015) 1071 | DOI
, , ,[35] Behaviour of the reference measure on RCD spaces under charts, preprint (2016)
, ,[36] Measure rigidity of synthetic lower Ricci curvature bound on Riemannian manifolds, Adv. Math. 373 (2020) | DOI
,[37] New differential operator and noncollapsed RCD spaces, Geom. Topol. 24 (2020) 2127 | DOI
,[38] Sphere theorems for RCD and stratified spaces, preprint (2019)
, ,[39] Geometric inequalities and generalized Ricci bounds in the Heisenberg group, Int. Math. Res. Not. 2009 (2009) 2347 | DOI
,[40] Perelman’s stability theorem, from: "Surveys in differential geometry, XI" (editors J Cheeger, K Grove), International (2007) 103 | DOI
,[41] CD meets CAT, J. Reine Angew. Math. 766 (2020) 1 | DOI
, ,[42] Metric-measure boundary and geodesic flow on Alexandrov spaces, J. Eur. Math. Soc. 23 (2021) 29 | DOI
, , ,[43] On the volume measure of non-smooth spaces with Ricci curvature bounded below, Ann. Sc. Norm. Super. Pisa Cl. Sci. 18 (2018) 593 | DOI
, ,[44] Cones over metric measure spaces and the maximal diameter theorem, J. Math. Pures Appl. 103 (2015) 1228 | DOI
,[45] Obata’s rigidity theorem for metric measure spaces, Anal. Geom. Metr. Spaces 3 (2015) 278 | DOI
,[46] Foundational essays on topological manifolds, smoothings, and triangulations, 88, Princeton Univ. Press (1977)
, ,[47] A Bishop-type inequality on metric measure spaces with Ricci curvature bounded below, Proc. Amer. Math. Soc. 145 (2017) 3137 | DOI
,[48] A sufficient condition to a regular set being of positive measure on RCD spaces, Potential Anal. 51 (2019) 179 | DOI
,[49] Characterization of low dimensional RCD∗(K,N) spaces, Anal. Geom. Metr. Spaces 4 (2016) 187 | DOI
, ,[50] Ricci curvature for metric-measure spaces via optimal transport, Ann. of Math. 169 (2009) 903 | DOI
, ,[51] Ricci curvature in dimension 2, preprint (2018)
, ,[52] Structure theory of metric measure spaces with lower Ricci curvature bounds, J. Eur. Math. Soc. 21 (2019) 1809 | DOI
, ,[53] On the measure contraction property of metric measure spaces, Comment. Math. Helv. 82 (2007) 805 | DOI
,[54] Finsler interpolation inequalities, Calc. Var. Partial Differential Equations 36 (2009) 211 | DOI
,[55] Alexandrov’s spaces with curvatures bounded from below, II, preprint (1991)
,[56] On eigenvalue pinching in positive Ricci curvature, Invent. Math. 138 (1999) 1 | DOI
,[57] Parallel transportation for Alexandrov space with curvature bounded below, Geom. Funct. Anal. 8 (1998) 123 | DOI
,[58] Alexandrov meets Lott–Villani–Sturm, Münster J. Math. 4 (2011) 53
,[59] Ends of maps, III : Dimensions 4 and 5, J. Differential Geom. 17 (1982) 503 | DOI
,[60] Non-branching geodesics and optimal maps in strong CD(K,∞)–spaces, Calc. Var. Partial Differential Equations 50 (2014) 831 | DOI
, ,[61] Ricci curvatures in Carnot groups, Math. Control Relat. Fields 3 (2013) 467 | DOI
,[62] Measure contraction properties of Carnot groups, Calc. Var. Partial Differential Equations 55 (2016) | DOI
,[63] Deformation of homeomorphisms on stratified sets, Comment. Math. Helv. 47 (1972) 123 | DOI
,[64] Ricci flow of non-collapsed three manifolds whose Ricci curvature is bounded from below, J. Reine Angew. Math. 662 (2012) 59 | DOI
,[65] Local mollification of Riemannian metrics using Ricci flow, and Ricci limit spaces, preprint (2017)
, ,[66] On the geometry of metric measure spaces, I, Acta Math. 196 (2006) 65 | DOI
,[67] On the geometry of metric measure spaces, II, Acta Math. 196 (2006) 133 | DOI
,[68] Optimal transport: old and new, 338, Springer (2009) | DOI
,[69] Inégalités isopérimétriques dans les espaces métriques mesurés (d’après F Cavalletti A Mondino), from: "Séminaire Bourbaki, 2016/2017", Astérisque 407, Soc. Math. France (2019) 213 | DOI
,[70] An extension procedure for manifolds with boundary, Pacific J. Math. 235 (2008) 173 | DOI
,Cité par Sources :