Holomorphic one-forms without zeros on threefolds
Geometry & topology, Tome 25 (2021) no. 1, pp. 409-444.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We show that a smooth complex projective threefold admits a holomorphic one-form without zeros if and only if the underlying real 6–manifold is a C–fibre bundle over the circle, and we give a complete classification of all threefolds with that property. Our results prove a conjecture of Kotschick in dimension three.

DOI : 10.2140/gt.2021.25.409
Classification : 14F45, 14J30, 32Q55, 32Q57
Keywords: topology of algebraic varieties, one-forms, minimal model program, classification, generic vanishing, threefolds

Hao, Feng 1 ; Schreieder, Stefan 2

1 Mathematisches Institut, LMU München, München, Germany, KU Leuven, Leuven, Belgium
2 Mathematisches Institut, LMU München, München, Germany
@article{GT_2021_25_1_a6,
     author = {Hao, Feng and Schreieder, Stefan},
     title = {Holomorphic one-forms without zeros on threefolds},
     journal = {Geometry & topology},
     pages = {409--444},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2021},
     doi = {10.2140/gt.2021.25.409},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.409/}
}
TY  - JOUR
AU  - Hao, Feng
AU  - Schreieder, Stefan
TI  - Holomorphic one-forms without zeros on threefolds
JO  - Geometry & topology
PY  - 2021
SP  - 409
EP  - 444
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.409/
DO  - 10.2140/gt.2021.25.409
ID  - GT_2021_25_1_a6
ER  - 
%0 Journal Article
%A Hao, Feng
%A Schreieder, Stefan
%T Holomorphic one-forms without zeros on threefolds
%J Geometry & topology
%D 2021
%P 409-444
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.409/
%R 10.2140/gt.2021.25.409
%F GT_2021_25_1_a6
Hao, Feng; Schreieder, Stefan. Holomorphic one-forms without zeros on threefolds. Geometry & topology, Tome 25 (2021) no. 1, pp. 409-444. doi : 10.2140/gt.2021.25.409. http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.409/

[1] W P Barth, K Hulek, C A M Peters, A Van De Ven, Compact complex surfaces, 4, Springer (2004) | DOI

[2] A Beauville, Variétés Kähleriennes dont la première classe de Chern est nulle, J. Differential Geom. 18 (1983) 755 | DOI

[3] F Campana, T Peternell, Complex threefolds with non-trivial holomorphic 2–forms, J. Algebraic Geom. 9 (2000) 223

[4] D Cooper, C D Hodgson, S P Kerckhoff, Three-dimensional orbifolds and cone-manifolds, 5, Math. Soc. Japan (2000) | DOI

[5] W Fischer, H Grauert, Lokal-triviale Familien kompakter komplexer Mannigfaltigkeiten, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II 1965 (1965) 89

[6] R Friedman, J W Morgan, Smooth four-manifolds and complex surfaces, 27, Springer (1994) | DOI

[7] T Fujita, On del Pezzo fibrations over curves, Osaka J. Math. 27 (1990) 229

[8] A Grassi, On a question of J. Kollár, from: "Classification of algebraic varieties" (editors C Ciliberto, E L Livorni, A J Sommese), Contemp. Math. 162, Amer. Math. Soc. (1994) 209 | DOI

[9] D Greb, S Kebekus, T Peternell, Étale fundamental groups of Kawamata log terminal spaces, flat sheaves, and quotients of abelian varieties, Duke Math. J. 165 (2016) 1965 | DOI

[10] M Green, R Lazarsfeld, Deformation theory, generic vanishing theorems, and some conjectures of Enriques, Catanese and Beauville, Invent. Math. 90 (1987) 389 | DOI

[11] C D Hacon, S J Kovács, Holomorphic one-forms on varieties of general type, Ann. Sci. École Norm. Sup. 38 (2005) 599 | DOI

[12] V A Iskovskikh, Y G Prokhorov, Algebraic geometry, V: Fano varieties, 47, Springer (1999)

[13] Y Kawamata, Abundance theorem for minimal threefolds, Invent. Math. 108 (1992) 229 | DOI

[14] J Kollár, Higher direct images of dualizing sheaves, I, Ann. of Math. 123 (1986) 11 | DOI

[15] J Kollár, Flops, Nagoya Math. J. 113 (1989) 15 | DOI

[16] J Kollár, S Mori, Birational geometry of algebraic varieties, 134, Cambridge Univ. Press (1998) | DOI

[17] D Kotschick, Holomorphic one-forms, fibrations over the circle, and characteristic numbers of Kähler manifolds, preprint (2013)

[18] T Luo, Q Zhang, Holomorphic forms on threefolds, from: "Recent progress in arithmetic and algebraic geometry" (editors Y Kachi, S B Mulay, P Tzermias), Contemp. Math. 386, Amer. Math. Soc. (2005) 87 | DOI

[19] S Mori, Threefolds whose canonical bundles are not numerically effective, Ann. of Math. 116 (1982) 133 | DOI

[20] N Nakayama, Local structure of an elliptic fibration, from: "Higher dimensional birational geometry" (editors S Mori, Y Miyaoka), Adv. Stud. Pure Math. 35, Math. Soc. Japan (2002) 185 | DOI

[21] C A M Peters, J H M Steenbrink, Mixed Hodge structures, 52, Springer (2008) | DOI

[22] M Popa, C Schnell, Kodaira dimension and zeros of holomorphic one-forms, Ann. of Math. 179 (2014) 1109 | DOI

[23] S Schreieder, Zeros of holomorphic one-forms and topology of Kähler manifolds, Int. Math. Res. Not. (2020) | DOI

[24] C Simpson, Subspaces of moduli spaces of rank one local systems, Ann. Sci. École Norm. Sup. 26 (1993) 361 | DOI

[25] D Tischler, On fibering certain foliated manifolds over S1, Topology 9 (1970) 153 | DOI

[26] K Ueno, Classification theory of algebraic varieties and compact complex spaces, 439, Springer (1975) | DOI

[27] C Voisin, Hodge theory and complex algebraic geometry, II, 77, Cambridge Univ. Press (2003) | DOI

[28] G W Whitehead, Elements of homotopy theory, 61, Springer (1978) | DOI

[29] Q Zhang, Global holomorphic one-forms on projective manifolds with ample canonical bundles, J. Algebraic Geom. 6 (1997) 777

Cité par Sources :