Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We show that a smooth complex projective threefold admits a holomorphic one-form without zeros if and only if the underlying real –manifold is a –fibre bundle over the circle, and we give a complete classification of all threefolds with that property. Our results prove a conjecture of Kotschick in dimension three.
Hao, Feng 1 ; Schreieder, Stefan 2
@article{GT_2021_25_1_a6, author = {Hao, Feng and Schreieder, Stefan}, title = {Holomorphic one-forms without zeros on threefolds}, journal = {Geometry & topology}, pages = {409--444}, publisher = {mathdoc}, volume = {25}, number = {1}, year = {2021}, doi = {10.2140/gt.2021.25.409}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.409/} }
TY - JOUR AU - Hao, Feng AU - Schreieder, Stefan TI - Holomorphic one-forms without zeros on threefolds JO - Geometry & topology PY - 2021 SP - 409 EP - 444 VL - 25 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.409/ DO - 10.2140/gt.2021.25.409 ID - GT_2021_25_1_a6 ER -
Hao, Feng; Schreieder, Stefan. Holomorphic one-forms without zeros on threefolds. Geometry & topology, Tome 25 (2021) no. 1, pp. 409-444. doi : 10.2140/gt.2021.25.409. http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.409/
[1] Compact complex surfaces, 4, Springer (2004) | DOI
, , , ,[2] Variétés Kähleriennes dont la première classe de Chern est nulle, J. Differential Geom. 18 (1983) 755 | DOI
,[3] Complex threefolds with non-trivial holomorphic 2–forms, J. Algebraic Geom. 9 (2000) 223
, ,[4] Three-dimensional orbifolds and cone-manifolds, 5, Math. Soc. Japan (2000) | DOI
, , ,[5] Lokal-triviale Familien kompakter komplexer Mannigfaltigkeiten, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II 1965 (1965) 89
, ,[6] Smooth four-manifolds and complex surfaces, 27, Springer (1994) | DOI
, ,[7] On del Pezzo fibrations over curves, Osaka J. Math. 27 (1990) 229
,[8] On a question of J. Kollár, from: "Classification of algebraic varieties" (editors C Ciliberto, E L Livorni, A J Sommese), Contemp. Math. 162, Amer. Math. Soc. (1994) 209 | DOI
,[9] Étale fundamental groups of Kawamata log terminal spaces, flat sheaves, and quotients of abelian varieties, Duke Math. J. 165 (2016) 1965 | DOI
, , ,[10] Deformation theory, generic vanishing theorems, and some conjectures of Enriques, Catanese and Beauville, Invent. Math. 90 (1987) 389 | DOI
, ,[11] Holomorphic one-forms on varieties of general type, Ann. Sci. École Norm. Sup. 38 (2005) 599 | DOI
, ,[12] Algebraic geometry, V: Fano varieties, 47, Springer (1999)
, ,[13] Abundance theorem for minimal threefolds, Invent. Math. 108 (1992) 229 | DOI
,[14] Higher direct images of dualizing sheaves, I, Ann. of Math. 123 (1986) 11 | DOI
,[15] Flops, Nagoya Math. J. 113 (1989) 15 | DOI
,[16] Birational geometry of algebraic varieties, 134, Cambridge Univ. Press (1998) | DOI
, ,[17] Holomorphic one-forms, fibrations over the circle, and characteristic numbers of Kähler manifolds, preprint (2013)
,[18] Holomorphic forms on threefolds, from: "Recent progress in arithmetic and algebraic geometry" (editors Y Kachi, S B Mulay, P Tzermias), Contemp. Math. 386, Amer. Math. Soc. (2005) 87 | DOI
, ,[19] Threefolds whose canonical bundles are not numerically effective, Ann. of Math. 116 (1982) 133 | DOI
,[20] Local structure of an elliptic fibration, from: "Higher dimensional birational geometry" (editors S Mori, Y Miyaoka), Adv. Stud. Pure Math. 35, Math. Soc. Japan (2002) 185 | DOI
,[21] Mixed Hodge structures, 52, Springer (2008) | DOI
, ,[22] Kodaira dimension and zeros of holomorphic one-forms, Ann. of Math. 179 (2014) 1109 | DOI
, ,[23] Zeros of holomorphic one-forms and topology of Kähler manifolds, Int. Math. Res. Not. (2020) | DOI
,[24] Subspaces of moduli spaces of rank one local systems, Ann. Sci. École Norm. Sup. 26 (1993) 361 | DOI
,[25] On fibering certain foliated manifolds over S1, Topology 9 (1970) 153 | DOI
,[26] Classification theory of algebraic varieties and compact complex spaces, 439, Springer (1975) | DOI
,[27] Hodge theory and complex algebraic geometry, II, 77, Cambridge Univ. Press (2003) | DOI
,[28] Elements of homotopy theory, 61, Springer (1978) | DOI
,[29] Global holomorphic one-forms on projective manifolds with ample canonical bundles, J. Algebraic Geom. 6 (1997) 777
,Cité par Sources :