Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Properly embedded simplices in a convex divisible domain behave somewhat like flats in Riemannian manifolds (Geom. Dedicata 33 (1990) 251–263), so we call them flats. We show that the set of codimension- flats has image which is a finite collection of disjoint virtual –tori in the compact quotient manifold. If this collection of virtual tori is nonempty, then the components of its complement are cusped convex projective manifolds with type cusps.
Bobb, Martin D 1
@article{GT_2021_25_7_a8, author = {Bobb, Martin D}, title = {Codimension-1 simplices in divisible convex domains}, journal = {Geometry & topology}, pages = {3725--3753}, publisher = {mathdoc}, volume = {25}, number = {7}, year = {2021}, doi = {10.2140/gt.2021.25.3725}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.3725/} }
Bobb, Martin D. Codimension-1 simplices in divisible convex domains. Geometry & topology, Tome 25 (2021) no. 7, pp. 3725-3753. doi : 10.2140/gt.2021.25.3725. http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.3725/
[1] Generalized cusps in real projective manifolds: classification, J. Topol. 13 (2020) 1455 | DOI
, , ,[2] Convex projective structures on nonhyperbolic three-manifolds, Geom. Topol. 22 (2018) 1593 | DOI
, , ,[3] Properly convex bending of hyperbolic manifolds, Groups Geom. Dyn. 14 (2020) 653 | DOI
, ,[4] Convexes divisibles, IV : Structure du bord en dimension 3, Invent. Math. 164 (2006) 249 | DOI
,[5] A survey on divisible convex sets, from: "Geometry, analysis and topology of discrete groups" (editors L Ji, K Liu, L Yang, S T Yau), Adv. Lect. Math. 6, International (2008) 1
,[6] Sur les variétés localement affines et localement projectives, Bull. Soc. Math. France 88 (1960) 229
,[7] Convex projective manifolds with a cusp of any non-diagonalizable type, J. Lond. Math. Soc. 100 (2019) 183 | DOI
,[8] On the structure of complete manifolds of nonnegative curvature, Ann. of Math. 96 (1972) 413 | DOI
, ,[9] On convex projective manifolds and cusps, Adv. Math. 277 (2015) 181 | DOI
, , ,[10] Convex co-compact actions of relatively hyperbolic groups, (2019)
, ,[11] A flat torus theorem for convex co-compact actions of projective linear groups, J. Lond. Math. Soc. 103 (2021) 470 | DOI
, ,[12] Seifert fibered spaces in 3–manifolds, 220, Amer. Math. Soc. (1979) | DOI
, ,[13] Homotopy equivalences of 3–manifolds with boundaries, 761, Springer (1979) | DOI
,[14] Around groups in Hilbert geometry, from: "Handbook of Hilbert geometry" (editors A Papadopoulos, M Troyanov), IRMA Lect. Math. Theor. Phys. 22, Eur. Math. Soc. (2014) 207
,[15] Degenerations of hyperbolic structures, III : Actions of 3–manifold groups on trees and Thurston’s compactness theorem, Ann. of Math. 127 (1988) 457 | DOI
, ,[16] Linear groups : Malcev’s theorem and Selberg’s lemma, preprint (2013)
,[17] Convex analysis, 28, Princeton Univ. Press (1970)
,[18] Structure of flat subspaces in low-dimensional manifolds of nonpositive curvature, Manuscripta Math. 64 (1989) 77 | DOI
,[19] Codimension one tori in manifolds of nonpositive curvature, Geom. Dedicata 33 (1990) 251 | DOI
,[20] Algebraic topology, McGraw-Hill (1966) | DOI
,[21] Sur les automorphismes affines des ouverts convexes saillants, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 24 (1970) 641
,Cité par Sources :