Factorization statistics and bug-eyed configuration spaces
Geometry & topology, Tome 25 (2021) no. 7, pp. 3691-3723.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

A recent theorem of Hyde proves that the factorization statistics of a random polynomial over a finite field are governed by the action of the symmetric group on the configuration space of n distinct ordered points in 3. Hyde asked whether this result could be explained geometrically. We give a geometric proof of Hyde’s theorem as an instance of the Grothendieck–Lefschetz trace formula applied to an interesting, highly nonseparated algebraic space. An advantage of our method is that it generalizes uniformly to any Weyl group. In the process we study certain non-Hausdorff models for complements of hyperplane arrangements, first introduced by Proudfoot.

DOI : 10.2140/gt.2021.25.3691
Keywords: arithmetic topology, configuration spaces, hyperplane arrangement, Salvetti complex

Petersen, Dan 1 ; Tosteson, Philip 2

1 Department of Mathematics, Stockholm University, Stockholm, Sweden
2 Department of Mathematics, University of Chicago, Chicago, IL, United States
@article{GT_2021_25_7_a7,
     author = {Petersen, Dan and Tosteson, Philip},
     title = {Factorization statistics and bug-eyed configuration spaces},
     journal = {Geometry & topology},
     pages = {3691--3723},
     publisher = {mathdoc},
     volume = {25},
     number = {7},
     year = {2021},
     doi = {10.2140/gt.2021.25.3691},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.3691/}
}
TY  - JOUR
AU  - Petersen, Dan
AU  - Tosteson, Philip
TI  - Factorization statistics and bug-eyed configuration spaces
JO  - Geometry & topology
PY  - 2021
SP  - 3691
EP  - 3723
VL  - 25
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.3691/
DO  - 10.2140/gt.2021.25.3691
ID  - GT_2021_25_7_a7
ER  - 
%0 Journal Article
%A Petersen, Dan
%A Tosteson, Philip
%T Factorization statistics and bug-eyed configuration spaces
%J Geometry & topology
%D 2021
%P 3691-3723
%V 25
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.3691/
%R 10.2140/gt.2021.25.3691
%F GT_2021_25_7_a7
Petersen, Dan; Tosteson, Philip. Factorization statistics and bug-eyed configuration spaces. Geometry & topology, Tome 25 (2021) no. 7, pp. 3691-3723. doi : 10.2140/gt.2021.25.3691. http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.3691/

[1] K A Adiprasito, Combinatorial stratifications and minimality of 2–arrangements, J. Topol. 7 (2014) 1200 | DOI

[2] K A Behrend, Derived l–adic categories for algebraic stacks, 774, Amer. Math. Soc. (2003) | DOI

[3] A Björner, G M Ziegler, Combinatorial stratification of complex arrangements, J. Amer. Math. Soc. 5 (1992) 105 | DOI

[4] E Brieskorn, Sur les groupes de tresses (d’après V I Arnold), from: "Séminaire Bourbaki, 1971/1972", Lecture Notes in Math. 317, Springer (1973) 21

[5] T Church, J S Ellenberg, B Farb, Representation stability in cohomology and asymptotics for families of varieties over finite fields, from: "Algebraic topology: applications and new directions" (editors U Tillmann, S Galatius, D Sinha), Contemp. Math. 620, Amer. Math. Soc. (2014) 1 | DOI

[6] B Conrad, M Temkin, Non-Archimedean analytification of algebraic spaces, J. Algebraic Geom. 18 (2009) 731 | DOI

[7] E Delucchi, Shelling-type orderings of regular CW-complexes and acyclic matchings of the Salvetti complex, Int. Math. Res. Not. 2008 (2008) | DOI

[8] A Dimca, S Papadima, Hypersurface complements, Milnor fibers and higher homotopy groups of arrangements, Ann. of Math. 158 (2003) 473 | DOI

[9] R Fox, L Neuwirth, The braid groups, Math. Scand. 10 (1962) 119 | DOI

[10] D B Fuchs, Cohomology of the braid group mod 2, Funkcional. Anal. i Priložen. 4 (1970) 62

[11] W Fulton, R Macpherson, A compactification of configuration spaces, Ann. of Math. 139 (1994) 183 | DOI

[12] N Gadish, A trace formula for the distribution of rational G–orbits in ramified covers, adapted to representation stability, New York J. Math. 23 (2017) 987

[13] M Goresky, R Macpherson, Stratified Morse theory, 14, Springer (1988) | DOI

[14] T Hyde, Polynomial factorization statistics and point configurations in R3, Int. Math. Res. Not. 2020 (2020) 10154 | DOI

[15] K K Ito, M Yoshinaga, Semi-algebraic partition and basis of Borel–Moore homology of hyperplane arrangements, Proc. Amer. Math. Soc. 140 (2012) 2065 | DOI

[16] R Jiménez Rolland, J C H Wilson, Stability for hyperplane complements of type B/C and statistics on squarefree polynomials over finite fields, Q. J. Math. 70 (2019) 565 | DOI

[17] R Kane, Reflection groups and invariant theory, 5, Springer (2001) | DOI

[18] M Kim, Weights in cohomology groups arising from hyperplane arrangements, Proc. Amer. Math. Soc. 120 (1994) 697 | DOI

[19] M Kisin, G I Lehrer, Equivariant Poincaré polynomials and counting points over finite fields, J. Algebra 247 (2002) 435 | DOI

[20] D Knutson, Algebraic spaces, 203, Springer (1971) | DOI

[21] J Kollár, Cone theorems and bug-eyed covers, J. Algebraic Geom. 1 (1992) 293

[22] Y Laszlo, M Olsson, The six operations for sheaves on Artin stacks, I : Finite coefficients, Publ. Math. Inst. Hautes Études Sci. 107 (2008) 109 | DOI

[23] Y Laszlo, M Olsson, The six operations for sheaves on Artin stacks, II : Adic coefficients, Publ. Math. Inst. Hautes Études Sci. 107 (2008) 169 | DOI

[24] G I Lehrer, The l–adic cohomology of hyperplane complements, Bull. Lond. Math. Soc. 24 (1992) 76 | DOI

[25] D Lofano, G Paolini, Euclidean matchings and minimality of hyperplane arrangements, Discrete Math. 344 (2021) | DOI

[26] I Moerdijk, J Mrčun, Lie groupoids, sheaves and cohomology, from: "Poisson geometry, deformation quantisation and group representations" (editors S Gutt, J Rawnsley, D Sternheimer), Lond. Math. Soc. Lect. Note Ser. 323, Cambridge Univ. Press (2005) 145 | DOI

[27] D Moseley, Equivariant cohomology and the Varchenko–Gelfand filtration, J. Algebra 472 (2017) 95 | DOI

[28] N Proudfoot, A non-Hausdorff model for the complement of a complexified hyperplane arrangement, Proc. Amer. Math. Soc. 135 (2007) 3989 | DOI

[29] R Randell, Morse theory, Milnor fibers and minimality of hyperplane arrangements, Proc. Amer. Math. Soc. 130 (2002) 2737 | DOI

[30] T Ransford, Potential theory in the complex plane, 28, Cambridge Univ. Press (1995) | DOI

[31] M Salvetti, Topology of the complement of real hyperplanes in CN, Invent. Math. 88 (1987) 603 | DOI

[32] M Salvetti, S Settepanella, Combinatorial Morse theory and minimality of hyperplane arrangements, Geom. Topol. 11 (2007) 1733 | DOI

[33] G C Shephard, J A Todd, Finite unitary reflection groups, Canad. J. Math. 6 (1954) 274 | DOI

Cité par Sources :