Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Let be a knot in an integral homology –sphere and the corresponding –fold cyclic branched cover. Assuming that is a rational homology sphere (which is always the case when is a prime power), we give a formula for the Lefschetz number of the action that the covering translation induces on the reduced monopole homology of . The proof relies on a careful analysis of the Seiberg–Witten equations on –orbifolds and of various –invariants. We give several applications of our formula: (1) we calculate the Seiberg–Witten and Furuta–Ohta invariants for the mapping tori of all semifree actions of on integral homology –spheres; (2) we give a novel obstruction (in terms of the Jones polynomial) for the branched cover of a knot in being an –space; and (3) we give a new set of knot concordance invariants in terms of the monopole Lefschetz numbers of covering translations on the branched covers.
Lin, Jianfeng 1 ; Ruberman, Daniel 2 ; Saveliev, Nikolai 3
@article{GT_2021_25_7_a5, author = {Lin, Jianfeng and Ruberman, Daniel and Saveliev, Nikolai}, title = {On the monopole {Lefschetz} number of finite-order diffeomorphisms}, journal = {Geometry & topology}, pages = {3591--3628}, publisher = {mathdoc}, volume = {25}, number = {7}, year = {2021}, doi = {10.2140/gt.2021.25.3591}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.3591/} }
TY - JOUR AU - Lin, Jianfeng AU - Ruberman, Daniel AU - Saveliev, Nikolai TI - On the monopole Lefschetz number of finite-order diffeomorphisms JO - Geometry & topology PY - 2021 SP - 3591 EP - 3628 VL - 25 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.3591/ DO - 10.2140/gt.2021.25.3591 ID - GT_2021_25_7_a5 ER -
%0 Journal Article %A Lin, Jianfeng %A Ruberman, Daniel %A Saveliev, Nikolai %T On the monopole Lefschetz number of finite-order diffeomorphisms %J Geometry & topology %D 2021 %P 3591-3628 %V 25 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.3591/ %R 10.2140/gt.2021.25.3591 %F GT_2021_25_7_a5
Lin, Jianfeng; Ruberman, Daniel; Saveliev, Nikolai. On the monopole Lefschetz number of finite-order diffeomorphisms. Geometry & topology, Tome 25 (2021) no. 7, pp. 3591-3628. doi : 10.2140/gt.2021.25.3591. http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.3591/
[1] A splitting formula in instanton Floer homology, preprint (2019)
,[2] Spectral asymmetry and Riemannian geometry, I, Math. Proc. Cambridge Philos. Soc. 77 (1975) 43 | DOI
, , ,[3] Spectral asymmetry and Riemannian geometry, III, Math. Proc. Cambridge Philos. Soc. 79 (1976) 71 | DOI
, , ,[4] Seiberg–Witten invariants, orbifolds, and circle actions, Trans. Amer. Math. Soc. 355 (2003) 1669 | DOI
,[5] Branched covers of quasi-positive links and L-spaces, J. Topol. 12 (2019) 536 | DOI
, , ,[6] On definite strongly quasipositive links and L-space branched covers, Adv. Math. 357 (2019) | DOI
, , ,[7] On L-spaces and left-orderable fundamental groups, Math. Ann. 356 (2013) 1213 | DOI
, , ,[8] Knots, 5, de Gruyter (1985)
, ,[9] Calculating Heegaard–Floer homology by counting lattice points in tetrahedra, Acta Math. Hungar. 144 (2014) 43 | DOI
, ,[10] Self-adjoint elliptic operators and manifold decompositions, II : Spectral flow and Maslov index, Comm. Pure Appl. Math. 49 (1996) 869 | DOI
, , ,[11] Equivalence of Heegaard Floer homology and embedded contact homology via open book decompositions, Proc. Natl. Acad. Sci. USA 108 (2011) 8100 | DOI
, , ,[12] The equivalence of Heegaard Floer homology and embedded contact homology via open book decompositions, I, preprint (2012)
, , ,[13] The equivalence of Heegaard Floer homology and embedded contact homology via open book decompositions, II, preprint (2012)
, , ,[14] The equivalence of Heegaard Floer homology and embedded contact homology, III: From hat to plus, preprint (2012)
, , ,[15] Equivariant Casson invariants via gauge theory, J. Reine Angew. Math. 541 (2001) 143 | DOI
, ,[16] Seifert fibered homology spheres with trivial Heegaard Floer homology, preprint (2009)
,[17] Equivariant aspects of Yang–Mills Floer theory, Topology 41 (2002) 525 | DOI
,[18] Monopole Floer homology for rational homology 3–spheres, Duke Math. J. 155 (2010) 519 | DOI
,[19] Differentiable structures on punctured 4–manifolds, Topology Appl. 51 (1993) 291 | DOI
, ,[20] Configurations of surfaces in 4–manifolds, Trans. Amer. Math. Soc. 264 (1981) 353 | DOI
,[21] Flat connections, the Alexander invariant, and Casson’s invariant, Comm. Anal. Geom. 5 (1997) 93 | DOI
,[22] Concordance invariants from higher order covers, Topology Appl. 159 (2012) 2694 | DOI
,[23] Monopoles and three-manifolds, 10, Cambridge Univ. Press (2007) | DOI
, ,[24] Knots, sutures, and excision, J. Differential Geom. 84 (2010) 301
, ,[25] HF = HM, I : Heegaard Floer homology and Seiberg–Witten Floer homology, Geom. Topol. 24 (2020) 2829 | DOI
, , ,[26] HF = HM, II : Reeb orbits and holomorphic curves for the ech/Heegaard Floer correspondence, Geom. Topol. 24 (2020) 2855 | DOI
, , ,[27] HF = HM, III : holomorphic curves and the differential for the ech/Heegaard Floer correspondence, Geom. Topol. 24 (2020) 3013 | DOI
, , ,[28] HF = HM, IV : The Seiberg–Witten Floer homology and ech correspondence, Geom. Topol. 24 (2020) 3219 | DOI
, , ,[29] HF = HM, V : Seiberg–Witten Floer homology and handle additions, Geom. Topol. 24 (2020) 3471 | DOI
, , ,[30] Knot modules, I, Trans. Amer. Math. Soc. 229 (1977) 1 | DOI
,[31] The equivalence of Seiberg–Witten and Casson invariants for homology 3–spheres, Math. Res. Lett. 6 (1999) 631 | DOI
,[32] Seiberg–Witten moduli spaces for 3–manifolds with cylindrical-end T2 × R+, Commun. Contemp. Math. 2 (2000) 461 | DOI
,[33] On the Frøyshov invariant and monopole Lefschetz number, preprint (2018)
, , ,[34] A splitting theorem for the Seiberg–Witten invariant of a homology S1 × S3, Geom. Topol. 22 (2018) 2865 | DOI
, , ,[35] Fiber sum formulae for the Casson–Seiberg–Witten invariant of integral homology S1 × S3, preprint (2019)
,[36] A surgery formula for the Casson–Seiberg–Witten invariant of integral homology S1 × S3, J. Topol. 14 (2021) 913 | DOI
,[37] Pin(2)–equivariant Seiberg–Witten Floer homology and the triangulation conjecture, J. Amer. Math. Soc. 29 (2016) 147 | DOI
,[38] Analytic surgery and the eta invariant, Geom. Funct. Anal. 5 (1995) 14 | DOI
, ,[39] Cutting and pasting and the η–invariant, Duke Math. J. 61 (1990) 747 | DOI
, ,[40] Seiberg–Witten equations, end-periodic Dirac operators, and a lift of Rohlin’s invariant, J. Differential Geom. 88 (2011) 333
, , ,[41] The generalized Casson invariant for 2–fold branched covers of S3 and the Jones polynomial, Topology 32 (1993) 419 | DOI
,[42] Seifert manifolds, plumbing, μ–invariant and orientation reversing maps, from: "Algebraic and geometric topology" (editor R J Milgram), Lecture Notes in Math. 664, Springer (1978) 163
, ,[43] Notes on Seiberg–Witten theory, 28, Amer. Math. Soc. (2000) | DOI
,[44] Rohlin’s invariant and gauge theory, I : Homology 3–tori, Comment. Math. Helv. 79 (2004) 618 | DOI
, ,[45] Rohlin’s invariant and gauge theory, II : Mapping tori, Geom. Topol. 8 (2004) 35 | DOI
, ,[46] Casson-type invariants from the Seiberg–Witten equations, from: "New ideas in low dimensional topology" (editors L H Kauffman, V O Manturov), Ser. Knots Everything 56, World Sci. (2015) 507 | DOI
, ,[47] On plumbed L–spaces, preprint (2005)
,[48] The Seiberg–Witten invariants and 4-manifolds with essential tori, Geom. Topol. 5 (2001) 441 | DOI
,[49] Embedded contact homology and Seiberg–Witten Floer cohomology, I, Geom. Topol. 14 (2010) 2497 | DOI
,[50] Monopoles and four-manifolds, Math. Res. Lett. 1 (1994) 769 | DOI
,Cité par Sources :