On the monopole Lefschetz number of finite-order diffeomorphisms
Geometry & topology, Tome 25 (2021) no. 7, pp. 3591-3628.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let K be a knot in an integral homology 3–sphere Y and Σ the corresponding n–fold cyclic branched cover. Assuming that Σ is a rational homology sphere (which is always the case when n is a prime power), we give a formula for the Lefschetz number of the action that the covering translation induces on the reduced monopole homology of Σ. The proof relies on a careful analysis of the Seiberg–Witten equations on 3–orbifolds and of various η–invariants. We give several applications of our formula: (1) we calculate the Seiberg–Witten and Furuta–Ohta invariants for the mapping tori of all semifree actions of n on integral homology 3–spheres; (2) we give a novel obstruction (in terms of the Jones polynomial) for the branched cover of a knot in S3 being an L–space; and (3) we give a new set of knot concordance invariants in terms of the monopole Lefschetz numbers of covering translations on the branched covers.

DOI : 10.2140/gt.2021.25.3591
Keywords: monopole, Seiberg–Witten, instantons, Floer homology, Furuta–Ohta invariant, $4$–manifold

Lin, Jianfeng 1 ; Ruberman, Daniel 2 ; Saveliev, Nikolai 3

1 Yau Mathematical Sciences Center, Tsinghua University, Beijing, China
2 Department of Mathematics, Brandeis University, Waltham, MA, United States
3 Department of Mathematics, University of Miami, Coral Gables, FL, United States
@article{GT_2021_25_7_a5,
     author = {Lin, Jianfeng and Ruberman, Daniel and Saveliev, Nikolai},
     title = {On the monopole {Lefschetz} number of finite-order diffeomorphisms},
     journal = {Geometry & topology},
     pages = {3591--3628},
     publisher = {mathdoc},
     volume = {25},
     number = {7},
     year = {2021},
     doi = {10.2140/gt.2021.25.3591},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.3591/}
}
TY  - JOUR
AU  - Lin, Jianfeng
AU  - Ruberman, Daniel
AU  - Saveliev, Nikolai
TI  - On the monopole Lefschetz number of finite-order diffeomorphisms
JO  - Geometry & topology
PY  - 2021
SP  - 3591
EP  - 3628
VL  - 25
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.3591/
DO  - 10.2140/gt.2021.25.3591
ID  - GT_2021_25_7_a5
ER  - 
%0 Journal Article
%A Lin, Jianfeng
%A Ruberman, Daniel
%A Saveliev, Nikolai
%T On the monopole Lefschetz number of finite-order diffeomorphisms
%J Geometry & topology
%D 2021
%P 3591-3628
%V 25
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.3591/
%R 10.2140/gt.2021.25.3591
%F GT_2021_25_7_a5
Lin, Jianfeng; Ruberman, Daniel; Saveliev, Nikolai. On the monopole Lefschetz number of finite-order diffeomorphisms. Geometry & topology, Tome 25 (2021) no. 7, pp. 3591-3628. doi : 10.2140/gt.2021.25.3591. http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.3591/

[1] N Anvari, A splitting formula in instanton Floer homology, preprint (2019)

[2] M F Atiyah, V K Patodi, I M Singer, Spectral asymmetry and Riemannian geometry, I, Math. Proc. Cambridge Philos. Soc. 77 (1975) 43 | DOI

[3] M F Atiyah, V K Patodi, I M Singer, Spectral asymmetry and Riemannian geometry, III, Math. Proc. Cambridge Philos. Soc. 79 (1976) 71 | DOI

[4] S J Baldridge, Seiberg–Witten invariants, orbifolds, and circle actions, Trans. Amer. Math. Soc. 355 (2003) 1669 | DOI

[5] M Boileau, S Boyer, C M Gordon, Branched covers of quasi-positive links and L-spaces, J. Topol. 12 (2019) 536 | DOI

[6] M Boileau, S Boyer, C M Gordon, On definite strongly quasipositive links and L-space branched covers, Adv. Math. 357 (2019) | DOI

[7] S Boyer, C M Gordon, L Watson, On L-spaces and left-orderable fundamental groups, Math. Ann. 356 (2013) 1213 | DOI

[8] G Burde, H Zieschang, Knots, 5, de Gruyter (1985)

[9] M B Can, Ç Karakurt, Calculating Heegaard–Floer homology by counting lattice points in tetrahedra, Acta Math. Hungar. 144 (2014) 43 | DOI

[10] S E Cappell, R Lee, E Y Miller, Self-adjoint elliptic operators and manifold decompositions, II : Spectral flow and Maslov index, Comm. Pure Appl. Math. 49 (1996) 869 | DOI

[11] V Colin, P Ghiggini, K Honda, Equivalence of Heegaard Floer homology and embedded contact homology via open book decompositions, Proc. Natl. Acad. Sci. USA 108 (2011) 8100 | DOI

[12] V Colin, P Ghiggini, K Honda, The equivalence of Heegaard Floer homology and embedded contact homology via open book decompositions, I, preprint (2012)

[13] V Colin, P Ghiggini, K Honda, The equivalence of Heegaard Floer homology and embedded contact homology via open book decompositions, II, preprint (2012)

[14] V Colin, P Ghiggini, K Honda, The equivalence of Heegaard Floer homology and embedded contact homology, III: From hat to plus, preprint (2012)

[15] O Collin, N Saveliev, Equivariant Casson invariants via gauge theory, J. Reine Angew. Math. 541 (2001) 143 | DOI

[16] E Eftekhary, Seifert fibered homology spheres with trivial Heegaard Floer homology, preprint (2009)

[17] K A Frøyshov, Equivariant aspects of Yang–Mills Floer theory, Topology 41 (2002) 525 | DOI

[18] K A Frøyshov, Monopole Floer homology for rational homology 3–spheres, Duke Math. J. 155 (2010) 519 | DOI

[19] M Furuta, H Ohta, Differentiable structures on punctured 4–manifolds, Topology Appl. 51 (1993) 291 | DOI

[20] P M Gilmer, Configurations of surfaces in 4–manifolds, Trans. Amer. Math. Soc. 264 (1981) 353 | DOI

[21] C M Herald, Flat connections, the Alexander invariant, and Casson’s invariant, Comm. Anal. Geom. 5 (1997) 93 | DOI

[22] S Jabuka, Concordance invariants from higher order covers, Topology Appl. 159 (2012) 2694 | DOI

[23] P Kronheimer, T Mrowka, Monopoles and three-manifolds, 10, Cambridge Univ. Press (2007) | DOI

[24] P Kronheimer, T Mrowka, Knots, sutures, and excision, J. Differential Geom. 84 (2010) 301

[25] Ç Kutluhan, Y J Lee, C H Taubes, HF = HM, I : Heegaard Floer homology and Seiberg–Witten Floer homology, Geom. Topol. 24 (2020) 2829 | DOI

[26] Ç Kutluhan, Y J Lee, C H Taubes, HF = HM, II : Reeb orbits and holomorphic curves for the ech/Heegaard Floer correspondence, Geom. Topol. 24 (2020) 2855 | DOI

[27] Ç Kutluhan, Y J Lee, C H Taubes, HF = HM, III : holomorphic curves and the differential for the ech/Heegaard Floer correspondence, Geom. Topol. 24 (2020) 3013 | DOI

[28] Ç Kutluhan, Y J Lee, C Taubes, HF = HM, IV : The Seiberg–Witten Floer homology and ech correspondence, Geom. Topol. 24 (2020) 3219 | DOI

[29] Ç Kutluhan, Y J Lee, C H Taubes, HF = HM, V : Seiberg–Witten Floer homology and handle additions, Geom. Topol. 24 (2020) 3471 | DOI

[30] J Levine, Knot modules, I, Trans. Amer. Math. Soc. 229 (1977) 1 | DOI

[31] Y Lim, The equivalence of Seiberg–Witten and Casson invariants for homology 3–spheres, Math. Res. Lett. 6 (1999) 631 | DOI

[32] Y Lim, Seiberg–Witten moduli spaces for 3–manifolds with cylindrical-end T2 × R+, Commun. Contemp. Math. 2 (2000) 461 | DOI

[33] J Lin, D Ruberman, N Saveliev, On the Frøyshov invariant and monopole Lefschetz number, preprint (2018)

[34] J Lin, D Ruberman, N Saveliev, A splitting theorem for the Seiberg–Witten invariant of a homology S1 × S3, Geom. Topol. 22 (2018) 2865 | DOI

[35] L Ma, Fiber sum formulae for the Casson–Seiberg–Witten invariant of integral homology S1 × S3, preprint (2019)

[36] L Ma, A surgery formula for the Casson–Seiberg–Witten invariant of integral homology S1 × S3, J. Topol. 14 (2021) 913 | DOI

[37] C Manolescu, Pin(2)–equivariant Seiberg–Witten Floer homology and the triangulation conjecture, J. Amer. Math. Soc. 29 (2016) 147 | DOI

[38] R R Mazzeo, R B Melrose, Analytic surgery and the eta invariant, Geom. Funct. Anal. 5 (1995) 14 | DOI

[39] R Meyerhoff, D Ruberman, Cutting and pasting and the η–invariant, Duke Math. J. 61 (1990) 747 | DOI

[40] T Mrowka, D Ruberman, N Saveliev, Seiberg–Witten equations, end-periodic Dirac operators, and a lift of Rohlin’s invariant, J. Differential Geom. 88 (2011) 333

[41] D Mullins, The generalized Casson invariant for 2–fold branched covers of S3 and the Jones polynomial, Topology 32 (1993) 419 | DOI

[42] W D Neumann, F Raymond, Seifert manifolds, plumbing, μ–invariant and orientation reversing maps, from: "Algebraic and geometric topology" (editor R J Milgram), Lecture Notes in Math. 664, Springer (1978) 163

[43] L I Nicolaescu, Notes on Seiberg–Witten theory, 28, Amer. Math. Soc. (2000) | DOI

[44] D Ruberman, N Saveliev, Rohlin’s invariant and gauge theory, I : Homology 3–tori, Comment. Math. Helv. 79 (2004) 618 | DOI

[45] D Ruberman, N Saveliev, Rohlin’s invariant and gauge theory, II : Mapping tori, Geom. Topol. 8 (2004) 35 | DOI

[46] D Ruberman, N Saveliev, Casson-type invariants from the Seiberg–Witten equations, from: "New ideas in low dimensional topology" (editors L H Kauffman, V O Manturov), Ser. Knots Everything 56, World Sci. (2015) 507 | DOI

[47] R Rustamov, On plumbed L–spaces, preprint (2005)

[48] C H Taubes, The Seiberg–Witten invariants and 4-manifolds with essential tori, Geom. Topol. 5 (2001) 441 | DOI

[49] C H Taubes, Embedded contact homology and Seiberg–Witten Floer cohomology, I, Geom. Topol. 14 (2010) 2497 | DOI

[50] E Witten, Monopoles and four-manifolds, Math. Res. Lett. 1 (1994) 769 | DOI

Cité par Sources :