A formula for the Voevodsky motive of the moduli stack of vector bundles on a curve
Geometry & topology, Tome 25 (2021) no. 7, pp. 3555-3589.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove a formula for the motive of the stack of vector bundles of fixed rank and degree over a smooth projective curve in Voevodsky’s triangulated category of mixed motives with rational coefficients.

DOI : 10.2140/gt.2021.25.3555
Keywords: motives, moduli stack, vector bundles

Hoskins, Victoria 1 ; Pepin Lehalleur, Simon 1

1 IMAPP, Radboud University Nijmegen, Nijmegen, Netherlands
@article{GT_2021_25_7_a4,
     author = {Hoskins, Victoria and Pepin Lehalleur, Simon},
     title = {A formula for the {Voevodsky} motive of the moduli stack of vector bundles on a curve},
     journal = {Geometry & topology},
     pages = {3555--3589},
     publisher = {mathdoc},
     volume = {25},
     number = {7},
     year = {2021},
     doi = {10.2140/gt.2021.25.3555},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.3555/}
}
TY  - JOUR
AU  - Hoskins, Victoria
AU  - Pepin Lehalleur, Simon
TI  - A formula for the Voevodsky motive of the moduli stack of vector bundles on a curve
JO  - Geometry & topology
PY  - 2021
SP  - 3555
EP  - 3589
VL  - 25
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.3555/
DO  - 10.2140/gt.2021.25.3555
ID  - GT_2021_25_7_a4
ER  - 
%0 Journal Article
%A Hoskins, Victoria
%A Pepin Lehalleur, Simon
%T A formula for the Voevodsky motive of the moduli stack of vector bundles on a curve
%J Geometry & topology
%D 2021
%P 3555-3589
%V 25
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.3555/
%R 10.2140/gt.2021.25.3555
%F GT_2021_25_7_a4
Hoskins, Victoria; Pepin Lehalleur, Simon. A formula for the Voevodsky motive of the moduli stack of vector bundles on a curve. Geometry & topology, Tome 25 (2021) no. 7, pp. 3555-3589. doi : 10.2140/gt.2021.25.3555. http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.3555/

[1] G Ancona, S Enright-Ward, A Huber, On the motive of a commutative algebraic group, Doc. Math. 20 (2015) 807

[2] G Ancona, A Huber, S Pepin Lehalleur, On the relative motive of a commutative group scheme, Algebr. Geom. 3 (2016) 150 | DOI

[3] M F Atiyah, R Bott, The Yang–Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London Ser. A 308 (1983) 523 | DOI

[4] J Ayoub, Les six opérations de Grothendieck et le formalisme des cycles évanescents dans le monde motivique, I, 314, Soc. Math. France (2007)

[5] J Ayoub, A guide to (étale) motivic sheaves, from: "Proceedings of the International Congress of Mathematicians, II" (editors S Y Jang, Y R Kim, D W Lee, I Yie), Kyung Moon Sa (2014) 1101

[6] J Ayoub, La réalisation étale et les opérations de Grothendieck, Ann. Sci. Éc. Norm. Supér. 47 (2014) 1 | DOI

[7] S Del Baño, On the Chow motive of some moduli spaces, J. Reine Angew. Math. 532 (2001) 105 | DOI

[8] M Bagnarol, B Fantechi, F Perroni, On the motive of Quot schemes of zero-dimensional quotients on a curve, New York J. Math. 26 (2020) 138

[9] A Beauville, Algebraic cycles on Jacobian varieties, Compos. Math. 140 (2004) 683 | DOI

[10] K Behrend, A Dhillon, On the motivic class of the stack of bundles, Adv. Math. 212 (2007) 617 | DOI

[11] P Belmans, A J De Jong, Others, The Stacks project, electronic reference (2005–)

[12] A Białynicki-Birula, Some properties of the decompositions of algebraic varieties determined by actions of a torus, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 24 (1976) 667

[13] E Bifet, F Ghione, M Letizia, On the Abel–Jacobi map for divisors of higher rank on a curve, Math. Ann. 299 (1994) 641 | DOI

[14] M A A De Cataldo, L Migliorini, The Chow motive of semismall resolutions, Math. Res. Lett. 11 (2004) 151 | DOI

[15] D C Cisinski, F Déglise, Triangulated categories of mixed motives, Springer (2019) | DOI

[16] C Deninger, J Murre, Motivic decomposition of abelian schemes and the Fourier transform, J. Reine Angew. Math. 422 (1991) 201 | DOI

[17] D Edidin, W Graham, Equivariant intersection theory, Invent. Math. 131 (1998) 595 | DOI

[18] R Fedorov, A Soibelman, Y Soibelman, Motivic classes of moduli of Higgs bundles and moduli of bundles with connections, Commun. Number Theory Phys. 12 (2018) 687 | DOI

[19] W Fulton, Intersection theory, 2, Springer (1998) | DOI

[20] D Gaitsgory, J Lurie, Weil’s conjecture for function fields, I, 199, Princeton Univ. Press (2019)

[21] A Grothendieck, Éléments de géométrie algébrique, IV : Étude locale des schémas et des morphismes de schémas, I, Inst. Hautes Études Sci. Publ. Math. 20 (1964) 5

[22] A Grothendieck, Éléments de géométrie algébrique, IV : Étude locale des schémas et des morphismes de schémas, II, Inst. Hautes Études Sci. Publ. Math. 24 (1965) 5

[23] G Harder, Chevalley groups over function fields and automorphic forms, Ann. of Math. 100 (1974) 249 | DOI

[24] J Heinloth, A conjecture of Hausel on the moduli space of Higgs bundles on a curve, Astérisque 370, Soc. Math. France (2015) 157 | DOI

[25] J Heinloth, A H W Schmitt, The cohomology rings of moduli stacks of principal bundles over curves, Doc. Math. 15 (2010) 423

[26] V Hoskins, S Pepin Lehalleur, On the Voevodsky motive of the moduli stack of vector bundles on a curve, Quart. J. Math. 72 (2021) 71 | DOI

[27] V Hoskins, S Pepin Lehalleur, On the Voevodsky motive of the moduli space of Higgs bundles on a curve, Selecta Math. 27 (2021) | DOI

[28] D Huybrechts, M Lehn, The geometry of moduli spaces of sheaves, Cambridge Univ. Press (2010) | DOI

[29] A Kresch, Cycle groups for Artin stacks, Invent. Math. 138 (1999) 495 | DOI

[30] K Künnemann, On the Chow motive of an abelian scheme, from: "Motives" (editors U Jannsen, S Kleiman, J P Serre), Proc. Sympos. Pure Math. 55, Amer. Math. Soc. (1994) 189

[31] G Laumon, Correspondance de Langlands géométrique pour les corps de fonctions, Duke Math. J. 54 (1987) 309 | DOI

[32] C Mazza, V Voevodsky, C Weibel, Lecture notes on motivic cohomology, 2, Amer. Math. Soc. (2006)

[33] B Osserman, Relative dimension of morphisms and dimension for algebraic stacks, J. Algebra 437 (2015) 52 | DOI

[34] S Pepin Lehalleur, Triangulated categories of relative 1–motives, Adv. Math. 347 (2019) 473 | DOI

[35] A T Ricolfi, On the motive of the Quot scheme of finite quotients of a locally free sheaf, J. Math. Pures Appl. 144 (2020) 50 | DOI

[36] B Totaro, The Chow ring of a classifying space, from: "Algebraic –theory", Proc. Sympos. Pure Math. 67, Amer. Math. Soc. (1999) 249 | DOI

[37] B Totaro, The motive of a classifying space, Geom. Topol. 20 (2016) 2079 | DOI

[38] A Vistoli, Intersection theory on algebraic stacks and on their moduli spaces, Invent. Math. 97 (1989) 613 | DOI

[39] V Voevodsky, Triangulated categories of motives over a field, from: "Cycles, transfers, and motivic homology theories", Ann. of Math. Stud. 143, Princeton Univ. Press (2000) 188 | DOI

Cité par Sources :