Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We prove a formula for the motive of the stack of vector bundles of fixed rank and degree over a smooth projective curve in Voevodsky’s triangulated category of mixed motives with rational coefficients.
Hoskins, Victoria 1 ; Pepin Lehalleur, Simon 1
@article{GT_2021_25_7_a4, author = {Hoskins, Victoria and Pepin Lehalleur, Simon}, title = {A formula for the {Voevodsky} motive of the moduli stack of vector bundles on a curve}, journal = {Geometry & topology}, pages = {3555--3589}, publisher = {mathdoc}, volume = {25}, number = {7}, year = {2021}, doi = {10.2140/gt.2021.25.3555}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.3555/} }
TY - JOUR AU - Hoskins, Victoria AU - Pepin Lehalleur, Simon TI - A formula for the Voevodsky motive of the moduli stack of vector bundles on a curve JO - Geometry & topology PY - 2021 SP - 3555 EP - 3589 VL - 25 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.3555/ DO - 10.2140/gt.2021.25.3555 ID - GT_2021_25_7_a4 ER -
%0 Journal Article %A Hoskins, Victoria %A Pepin Lehalleur, Simon %T A formula for the Voevodsky motive of the moduli stack of vector bundles on a curve %J Geometry & topology %D 2021 %P 3555-3589 %V 25 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.3555/ %R 10.2140/gt.2021.25.3555 %F GT_2021_25_7_a4
Hoskins, Victoria; Pepin Lehalleur, Simon. A formula for the Voevodsky motive of the moduli stack of vector bundles on a curve. Geometry & topology, Tome 25 (2021) no. 7, pp. 3555-3589. doi : 10.2140/gt.2021.25.3555. http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.3555/
[1] On the motive of a commutative algebraic group, Doc. Math. 20 (2015) 807
, , ,[2] On the relative motive of a commutative group scheme, Algebr. Geom. 3 (2016) 150 | DOI
, , ,[3] The Yang–Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London Ser. A 308 (1983) 523 | DOI
, ,[4] Les six opérations de Grothendieck et le formalisme des cycles évanescents dans le monde motivique, I, 314, Soc. Math. France (2007)
,[5] A guide to (étale) motivic sheaves, from: "Proceedings of the International Congress of Mathematicians, II" (editors S Y Jang, Y R Kim, D W Lee, I Yie), Kyung Moon Sa (2014) 1101
,[6] La réalisation étale et les opérations de Grothendieck, Ann. Sci. Éc. Norm. Supér. 47 (2014) 1 | DOI
,[7] On the Chow motive of some moduli spaces, J. Reine Angew. Math. 532 (2001) 105 | DOI
,[8] On the motive of Quot schemes of zero-dimensional quotients on a curve, New York J. Math. 26 (2020) 138
, , ,[9] Algebraic cycles on Jacobian varieties, Compos. Math. 140 (2004) 683 | DOI
,[10] On the motivic class of the stack of bundles, Adv. Math. 212 (2007) 617 | DOI
, ,[11] The Stacks project, electronic reference (2005–)
, , ,[12] Some properties of the decompositions of algebraic varieties determined by actions of a torus, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 24 (1976) 667
,[13] On the Abel–Jacobi map for divisors of higher rank on a curve, Math. Ann. 299 (1994) 641 | DOI
, , ,[14] The Chow motive of semismall resolutions, Math. Res. Lett. 11 (2004) 151 | DOI
, ,[15] Triangulated categories of mixed motives, Springer (2019) | DOI
, ,[16] Motivic decomposition of abelian schemes and the Fourier transform, J. Reine Angew. Math. 422 (1991) 201 | DOI
, ,[17] Equivariant intersection theory, Invent. Math. 131 (1998) 595 | DOI
, ,[18] Motivic classes of moduli of Higgs bundles and moduli of bundles with connections, Commun. Number Theory Phys. 12 (2018) 687 | DOI
, , ,[19] Intersection theory, 2, Springer (1998) | DOI
,[20] Weil’s conjecture for function fields, I, 199, Princeton Univ. Press (2019)
, ,[21] Éléments de géométrie algébrique, IV : Étude locale des schémas et des morphismes de schémas, I, Inst. Hautes Études Sci. Publ. Math. 20 (1964) 5
,[22] Éléments de géométrie algébrique, IV : Étude locale des schémas et des morphismes de schémas, II, Inst. Hautes Études Sci. Publ. Math. 24 (1965) 5
,[23] Chevalley groups over function fields and automorphic forms, Ann. of Math. 100 (1974) 249 | DOI
,[24] A conjecture of Hausel on the moduli space of Higgs bundles on a curve, Astérisque 370, Soc. Math. France (2015) 157 | DOI
,[25] The cohomology rings of moduli stacks of principal bundles over curves, Doc. Math. 15 (2010) 423
, ,[26] On the Voevodsky motive of the moduli stack of vector bundles on a curve, Quart. J. Math. 72 (2021) 71 | DOI
, ,[27] On the Voevodsky motive of the moduli space of Higgs bundles on a curve, Selecta Math. 27 (2021) | DOI
, ,[28] The geometry of moduli spaces of sheaves, Cambridge Univ. Press (2010) | DOI
, ,[29] Cycle groups for Artin stacks, Invent. Math. 138 (1999) 495 | DOI
,[30] On the Chow motive of an abelian scheme, from: "Motives" (editors U Jannsen, S Kleiman, J P Serre), Proc. Sympos. Pure Math. 55, Amer. Math. Soc. (1994) 189
,[31] Correspondance de Langlands géométrique pour les corps de fonctions, Duke Math. J. 54 (1987) 309 | DOI
,[32] Lecture notes on motivic cohomology, 2, Amer. Math. Soc. (2006)
, , ,[33] Relative dimension of morphisms and dimension for algebraic stacks, J. Algebra 437 (2015) 52 | DOI
,[34] Triangulated categories of relative 1–motives, Adv. Math. 347 (2019) 473 | DOI
,[35] On the motive of the Quot scheme of finite quotients of a locally free sheaf, J. Math. Pures Appl. 144 (2020) 50 | DOI
,[36] The Chow ring of a classifying space, from: "Algebraic –theory", Proc. Sympos. Pure Math. 67, Amer. Math. Soc. (1999) 249 | DOI
,[37] The motive of a classifying space, Geom. Topol. 20 (2016) 2079 | DOI
,[38] Intersection theory on algebraic stacks and on their moduli spaces, Invent. Math. 97 (1989) 613 | DOI
,[39] Triangulated categories of motives over a field, from: "Cycles, transfers, and motivic homology theories", Ann. of Math. Stud. 143, Princeton Univ. Press (2000) 188 | DOI
,Cité par Sources :