Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We compute tautological integrals over Quot schemes on curves and surfaces. After obtaining several explicit formulas over Quot schemes of dimension- quotients on curves (and finding a new symmetry), we apply the results to tautological integrals against the virtual fundamental classes of Quot schemes of dimension and quotients on surfaces (using also universality, torus localization and cosection localization). The virtual Euler characteristics of Quot schemes of surfaces, a new theory parallel to the Vafa–Witten Euler characteristics of the moduli of bundles, is defined and studied. Complete formulas for the virtual Euler characteristics are found in the case of dimension- quotients on surfaces. Dimension- quotients are studied on K3 surfaces and surfaces of general type, with connections to the Kawai–Yoshioka formula and the Seiberg–Witten invariants, respectively. The dimension- theory is completely solved for minimal surfaces of general type admitting a nonsingular canonical curve. Along the way, we find a new connection between weighted tree counting and multivariate Fuss–Catalan numbers, which is of independent interest.
Oprea, Dragos 1 ; Pandharipande, Rahul 2
@article{GT_2021_25_7_a2, author = {Oprea, Dragos and Pandharipande, Rahul}, title = {Quot schemes of curves and surfaces: virtual classes, integrals, {Euler} characteristics}, journal = {Geometry & topology}, pages = {3425--3505}, publisher = {mathdoc}, volume = {25}, number = {7}, year = {2021}, doi = {10.2140/gt.2021.25.3425}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.3425/} }
TY - JOUR AU - Oprea, Dragos AU - Pandharipande, Rahul TI - Quot schemes of curves and surfaces: virtual classes, integrals, Euler characteristics JO - Geometry & topology PY - 2021 SP - 3425 EP - 3505 VL - 25 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.3425/ DO - 10.2140/gt.2021.25.3425 ID - GT_2021_25_7_a2 ER -
%0 Journal Article %A Oprea, Dragos %A Pandharipande, Rahul %T Quot schemes of curves and surfaces: virtual classes, integrals, Euler characteristics %J Geometry & topology %D 2021 %P 3425-3505 %V 25 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.3425/ %R 10.2140/gt.2021.25.3425 %F GT_2021_25_7_a2
Oprea, Dragos; Pandharipande, Rahul. Quot schemes of curves and surfaces: virtual classes, integrals, Euler characteristics. Geometry & topology, Tome 25 (2021) no. 7, pp. 3425-3505. doi : 10.2140/gt.2021.25.3425. http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.3425/
[1] The virtual K–theory of Quot schemes of surfaces, J. Geom. Phys. 164 (2021) | DOI
, , , , ,[2] Multivariate Fuss–Catalan numbers, Discrete Math. 308 (2008) 4660 | DOI
,[3] Compact complex surfaces, 4, Springer (1984) | DOI
, , ,[4] Towards a Schubert calculus for maps from a Riemann surface to a Grassmannian, Internat. J. Math. 5 (1994) 811 | DOI
,[5] Gromov invariants for holomorphic maps from Riemann surfaces to Grassmannians, J. Amer. Math. Soc. 9 (1996) 529 | DOI
, , ,[6] Poincaré invariants are Seiberg–Witten invariants, Geom. Topol. 17 (2013) 1149 | DOI
, ,[7] Geometry of curves with exceptional secant planes: linear series along the general curve, Math. Z. 267 (2011) 549 | DOI
,[8] Poincaré invariants, Topology 46 (2007) 225 | DOI
, , ,[9] On the cobordism class of the Hilbert scheme of a surface, J. Algebraic Geom. 10 (2001) 81
, , ,[10] On the irreducibility of the punctual quotient scheme of a surface, preprint (1997)
, ,[11] Riemann–Roch theorems and elliptic genus for virtually smooth schemes, Geom. Topol. 14 (2010) 83 | DOI
, ,[12] A combinatorial proof of the multivariable Lagrange inversion formula, J. Combin. Theory Ser. A 45 (1987) 178 | DOI
,[13] Nested Hilbert schemes on surfaces : virtual fundamental class, Adv. Math. 365 (2020) 107046, 50 | DOI
, , ,[14] Degeneracy loci, virtual cycles and nested Hilbert schemes, I, Tunis. J. Math. 2 (2020) 633 | DOI
, ,[15] Refined SU(3) Vafa–Witten invariants and modularity, Pure Appl. Math. Q. 14 (2018) 467 | DOI
, ,[16] Virtual refinements of the Vafa–Witten formula, Comm. Math. Phys. 376 (2020) 1 | DOI
, ,[17] Instanton counting and Donaldson invariants, J. Differential Geom. 80 (2008) 343
, , ,[18] Localization of virtual classes, Invent. Math. 135 (1999) 487 | DOI
, ,[19] Fusion residues, Modern Phys. Lett. A 6 (1991) 3543 | DOI
,[20] Rationality of descendent series for Hilbert and Quot schemes of surfaces, Selecta Math. 27 (2021) | DOI
, , ,[21] String partition functions and infinite products, Adv. Theor. Math. Phys. 4 (2000) 397 | DOI
, ,[22] Localizing virtual cycles by cosections, J. Amer. Math. Soc. 26 (2013) 1025 | DOI
, ,[23] Stable pair invariants of surfaces and Seiberg–Witten invariants, Q. J. Math. 67 (2016) 365 | DOI
,[24] A short proof of the Göttsche conjecture, Geom. Topol. 15 (2011) 397 | DOI
, , ,[25] Monopole contributions to refined Vafa–Witten invariants, Geom. Topol. 24 (2020) 2781 | DOI
,[26] Sur une formule de Castelnuovo pour les espaces multisécants, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. 10 (2007) 381
,[27] A structure theorem for the Gromov–Witten invariants of Kähler surfaces, J. Differential Geom. 77 (2007) 483
, ,[28] Chern classes of tautological sheaves on Hilbert schemes of points on surfaces, Invent. Math. 136 (1999) 157 | DOI
,[29] Algebraic cobordism, Springer (2007) | DOI
, ,[30] Algebraic cobordism revisited, Invent. Math. 176 (2009) 63 | DOI
, ,[31] Algebraic geometric interpretation of Donaldson’s polynomial invariants, J. Differential Geom. 37 (1993) 417
,[32] On the intersection theory of Quot schemes and moduli of bundles with sections, J. Reine Angew. Math. 610 (2007) 13 | DOI
,[33] Counts of maps to Grassmannians and intersections on the moduli space of bundles, J. Differential Geom. 76 (2007) 155
, ,[34] Virtual intersections on the Quot scheme and Vafa–Intriligator formulas, Duke Math. J. 136 (2007) 81 | DOI
, ,[35] The moduli space of stable quotients, Geom. Topol. 15 (2011) 1651 | DOI
, , ,[36] Segre classes and Hilbert schemes of points, Ann. Sci. Éc. Norm. Supér. 50 (2017) 239 | DOI
, , ,[37] The combinatorics of Lehn’s conjecture, J. Math. Soc. Japan 71 (2019) 299 | DOI
, , ,[38] Higher rank Segre integrals over the Hilbert scheme of points, J. Eur. Math. Soc. (2021) | DOI
, , ,[39] Gromov–Witten theory and Donaldson–Thomas theory, I, Compos. Math. 142 (2006) 1263 | DOI
, , , ,[40] Gromov–Witten theory and Donaldson–Thomas theory, II, Compos. Math. 142 (2006) 1286 | DOI
, , , ,[41] New calculations in Gromov–Witten theory, Pure Appl. Math. Q. 4 (2008) 469 | DOI
, ,[42] Curves on K3 surfaces and modular forms, J. Topol. 3 (2010) 937 | DOI
, , ,[43] A calculus for the moduli space of curves, from: "Algebraic geometry : Salt Lake City 2015" (editors T de Fernex, B Hassett, M Mustaţă, M Olsson, M Popa, R Thomas), Proc. Sympos. Pure Math. 97, Amer. Math. Soc. (2018) 459
,[44] Descendent theory for stable pairs on toric 3–folds, J. Math. Soc. Japan 65 (2013) 1337 | DOI
, ,[45] Descendents on local curves: rationality, Compos. Math. 149 (2013) 81 | DOI
, ,[46] Relations in the tautological ring of the moduli space of curves, Pure Appl. Math. Q. 17 (2021) 717 | DOI
, ,[47] Stable pairs and BPS invariants, J. Amer. Math. Soc. 23 (2010) 267 | DOI
, ,[48] The Katz–Klemm–Vafa conjecture for K3 surfaces, Forum Math. Pi 4 (2016) | DOI
, ,[49] Virtual invariants of Quot schemes over del Pezzo surfaces, PhD thesis, University of California, San Diego (2012)
,[50] Cobordism invariants of the moduli space of stable pairs, J. Lond. Math. Soc. 94 (2016) 427 | DOI
,[51] On quantum cohomology rings of Fano manifolds and a formula of Vafa and Intriligator, Asian J. Math. 1 (1997) 679 | DOI
, ,[52] Catalan numbers, Cambridge Univ. Press (2015) | DOI
,[53] Vafa–Witten invariants for projective surfaces, II : Semistable case, Pure Appl. Math. Q. 13 (2017) 517 | DOI
, ,[54] Vafa–Witten invariants for projective surfaces, I : Stable case, J. Algebraic Geom. 29 (2020) 603 | DOI
, ,[55] Stable pairs, linear systems and the Verlinde formula, Invent. Math. 117 (1994) 317 | DOI
,[56] A holomorphic Casson invariant for Calabi–Yau 3–folds, and bundles on K3 fibrations, J. Differential Geom. 54 (2000) 367
,[57] A strong coupling test of S–duality, Nuclear Phys. B 431 (1994) 3 | DOI
, ,[58] Segre classes of tautological bundles on Hilbert schemes of surfaces, Algebr. Geom. 6 (2019) 186 | DOI
,[59] Tautological integrals on symmetric products of curves, Acta Math. Sin. Engl. Ser. 32 (2016) 901 | DOI
,[60] Generating series of intersection numbers on Hilbert schemes of points, Front. Math. China 12 (2017) 1247 | DOI
, ,[61] A course of modern analysis, Cambridge Univ. Press (1996) | DOI
, ,Cité par Sources :