Rational Pontryagin classes of Euclidean fiber bundles
Geometry & topology, Tome 25 (2021) no. 7, pp. 3351-3424.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

The Pontryagin classes of an m–dimensional real vector bundle satisfy well-known vanishing relations due to their close relationship with the Chern classes of the complexified vector bundle. It is also known that the rational Pontryagin classes qualify as characteristic classes for Euclidean fiber bundles, ie bundles whose fibers are homeomorphic to m–dimensional Euclidean space. In this more general setting of fiber bundles, the vanishing relations which one has for vector bundles fail to hold.

DOI : 10.2140/gt.2021.25.3351
Classification : 57N55, 57R20, 57R40
Keywords: Pontryagin classes, homeomorphisms, diffeomorphisms

Weiss, Michael S 1

1 Faculty of Mathematics and Computer Science, University of Muenster, Muenster, Germany
@article{GT_2021_25_7_a1,
     author = {Weiss, Michael S},
     title = {Rational {Pontryagin} classes of {Euclidean} fiber bundles},
     journal = {Geometry & topology},
     pages = {3351--3424},
     publisher = {mathdoc},
     volume = {25},
     number = {7},
     year = {2021},
     doi = {10.2140/gt.2021.25.3351},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.3351/}
}
TY  - JOUR
AU  - Weiss, Michael S
TI  - Rational Pontryagin classes of Euclidean fiber bundles
JO  - Geometry & topology
PY  - 2021
SP  - 3351
EP  - 3424
VL  - 25
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.3351/
DO  - 10.2140/gt.2021.25.3351
ID  - GT_2021_25_7_a1
ER  - 
%0 Journal Article
%A Weiss, Michael S
%T Rational Pontryagin classes of Euclidean fiber bundles
%J Geometry & topology
%D 2021
%P 3351-3424
%V 25
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.3351/
%R 10.2140/gt.2021.25.3351
%F GT_2021_25_7_a1
Weiss, Michael S. Rational Pontryagin classes of Euclidean fiber bundles. Geometry & topology, Tome 25 (2021) no. 7, pp. 3351-3424. doi : 10.2140/gt.2021.25.3351. http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.3351/

[1] J F Adams, Infinite loop spaces, 90, Princeton Univ. Press (1978) | DOI

[2] R Andrade, From manifolds to invariants of En–algebras, PhD thesis, Massachusetts Institute of Technology (2010)

[3] S Axelrod, I M Singer, Chern–Simons perturbation theory, II, J. Differential Geom. 39 (1994) 173

[4] D Ayala, J Francis, N Rozenblyum, Factorization homology, I : Higher categories, Adv. Math. 333 (2018) 1042 | DOI

[5] A Berglund, J Bergström, Hirzebruch L–polynomials and multiple zeta values, Math. Ann. 372 (2018) 125 | DOI

[6] P Boavida De Brito, M Weiss, Manifold calculus and homotopy sheaves, Homology Homotopy Appl. 15 (2013) 361 | DOI

[7] P Boavida De Brito, M S Weiss, The configuration category of a product, Proc. Amer. Math. Soc. 146 (2018) 4497 | DOI

[8] P Boavida De Brito, M Weiss, Spaces of smooth embeddings and configuration categories, J. Topol. 11 (2018) 65 | DOI

[9] M Brown, Locally flat imbeddings of topological manifolds, Ann. of Math. 75 (1962) 331 | DOI

[10] D Burghelea, R Lashof, The homotopy type of the space of diffeomorphisms, I, Trans. Amer. Math. Soc. 196 (1974) 1 | DOI

[11] D C Cisinski, I Moerdijk, Dendroidal sets as models for homotopy operads, J. Topol. 4 (2011) 257 | DOI

[12] D C Cisinski, I Moerdijk, Dendroidal Segal spaces and ∞–operads, J. Topol. 6 (2013) 675 | DOI

[13] D C Cisinski, I Moerdijk, Dendroidal sets and simplicial operads, J. Topol. 6 (2013) 705 | DOI

[14] F R Cohen, T J Lada, J P May, The homology of iterated loop spaces, 533, Springer (1976) | DOI

[15] R Connelly, A new proof of Brown’s collaring theorem, Proc. Amer. Math. Soc. 27 (1971) 180 | DOI

[16] T Tom Dieck, Transformation groups, 8, de Gruyter (1987) | DOI

[17] W G Dwyer, D M Kan, Function complexes in homotopical algebra, Topology 19 (1980) 427 | DOI

[18] W G Dwyer, D M Kan, An obstruction theory for diagrams of simplicial sets, Nederl. Akad. Wetensch. Indag. Math. 46 (1984) 139

[19] F T Farrell, W C Hsiang, On the rational homotopy groups of the diffeomorphism groups of discs, spheres and aspherical manifolds, from: "Algebraic and geometric topology, I" (editor R J Milgram), Proc. Sympos. Pure Math. 32, Amer. Math. Soc. (1978) 325 | DOI

[20] B Fresse, V Turchin, T Willwacher, The rational homotopy of mapping spaces of En operads, preprint (2017)

[21] B Fresse, T Willwacher, Mapping spaces for DG Hopf cooperads and homotopy automorphisms of the rationalization of En–operads, preprint (2020)

[22] W Fulton, R Macpherson, A compactification of configuration spaces, Ann. of Math. 139 (1994) 183 | DOI

[23] S Galatius, O Randal-Williams, Stable moduli spaces of high-dimensional manifolds, Acta Math. 212 (2014) 257 | DOI

[24] S Galatius, O Randal-Williams, Homological stability for moduli spaces of high dimensional manifolds, I, J. Amer. Math. Soc. 31 (2018) 215 | DOI

[25] P Goerss, K Schemmerhorn, Model categories and simplicial methods, from: "Interactions between homotopy theory and algebra" (editors L L Avramov, J D Christensen, W G Dwyer, M A Mandell, B E Shipley), Contemp. Math. 436, Amer. Math. Soc. (2007) 3 | DOI

[26] T G Goodwillie, A multiple disjunction lemma for smooth concordance embeddings, 431, Amer. Math. Soc. (1990) | DOI

[27] T G Goodwillie, J R Klein, Multiple disjunction for spaces of Poincaré embeddings, J. Topol. 1 (2008) 761 | DOI

[28] T G Goodwillie, J R Klein, Multiple disjunction for spaces of smooth embeddings, J. Topol. 8 (2015) 651 | DOI

[29] T G Goodwillie, M Weiss, Embeddings from the point of view of immersion theory, II, Geom. Topol. 3 (1999) 103 | DOI

[30] F Göppl, A spectral sequence for spaces of maps between operads, preprint (2018)

[31] P J Hilton, On the homotopy groups of the union of spheres, J. Lond. Math. Soc. 30 (1955) 154 | DOI

[32] M W Hirsch, Differential topology, 33, Springer (1976) | DOI

[33] P S Hirschhorn, Model categories and their localizations, 99, Amer. Math. Soc. (2003) | DOI

[34] F Hirzebruch, Topological methods in algebraic geometry, 131, Springer (1966) | DOI

[35] J Hollender, R M Vogt, Modules of topological spaces, applications to homotopy limits and E∞ structures, Arch. Math. (Basel) 59 (1992) 115 | DOI

[36] M Hovey, Model categories, 63, Amer. Math. Soc. (1999)

[37] K Igusa, The stability theorem for smooth pseudoisotopies, –Theory 2 (1988) 1 | DOI

[38] K Igusa, Higher Franz–Reidemeister torsion, 31, Amer. Math. Soc. (2002) | DOI

[39] R C Kirby, L C Siebenmann, Foundational essays on topological manifolds, smoothings, and triangulations, 88, Princeton Univ. Press (1977)

[40] J M Kister, Microbundles are fibre bundles, Ann. of Math. 80 (1964) 190 | DOI

[41] M Kontsevich, Operads and motives in deformation quantization, Lett. Math. Phys. 48 (1999) 35 | DOI

[42] A Kosiński, On the inertia group of π–manifolds, Amer. J. Math. 89 (1967) 227 | DOI

[43] M Krannich, A homological approach to pseudoisotopy theory, I, (2020)

[44] A Kupers, Some finiteness results for groups of automorphisms of manifolds, Geom. Topol. 23 (2019) 2277 | DOI

[45] P Lambrechts, I Volić, Formality of the little N–disks operad, 1079, Amer. Math. Soc. (2014)

[46] W Lück, A Ranicki, Surgery obstructions of fibre bundles, J. Pure Appl. Algebra 81 (1992) 139 | DOI

[47] M Mather, Pull-backs in homotopy theory, Canad. J. Math. 28 (1976) 225 | DOI

[48] C Mctague, Triangle read by rows : numerators of coefficients of the Hirzebruch L–polynomials Ln expressing the signature of a 4n–dimensional manifold in terms of its Pontrjagin numbers (as in Hirzebruch signature theorem), (2014)

[49] W Meyer, Die Signatur von lokalen Koeffizientensystemen und Faserbündeln, Bonn. Math. Schr. 1972 (1972) 1

[50] D A Miller, Popaths and holinks, J. Homotopy Relat. Struct. 4 (2009) 265

[51] D A Miller, Strongly stratified homotopy theory, Trans. Amer. Math. Soc. 365 (2013) 4933 | DOI

[52] J Milnor, Microbundles, I, Topology 3 (1964) 53 | DOI

[53] J W Milnor, On the construction FK, from: "Algebraic topology : a student’s guide" (editor J F Adams), Lond. Math. Soc. Lect. Note Ser. 4, Cambridge Univ. Press (1972) 118 | DOI

[54] J W Milnor, J D Stasheff, Characteristic classes, 76, Princeton Univ. Press (1974)

[55] I Moerdijk, I Weiss, Dendroidal sets, Algebr. Geom. Topol. 7 (2007) 1441 | DOI

[56] S Morita, Geometry of characteristic classes, 199, Amer. Math. Soc. (2001) | DOI

[57] C Morlet, Lissage des homéomorphismes, C. R. Acad. Sci. Paris Sér. A-B 269 (1969) 1323

[58] S P Novikov, Topological invariance of rational classes of Pontrjagin, Dokl. Akad. Nauk SSSR 163 (1965) 298

[59] F Quinn, Topological transversality holds in all dimensions, Bull. Amer. Math. Soc. 18 (1988) 145 | DOI

[60] O Randal-Williams, An upper bound for the pseudoisotopy stable range, Math. Ann. 368 (2017) 1081 | DOI

[61] O Randal-Williams, A note on the family signature theorem, unpublished note (2019)

[62] E Riehl, Categorical homotopy theory, 24, Cambridge Univ. Press (2014) | DOI

[63] V A Rokhlin, A S Schwarz, The combinatorial invariance of Pontrjagin classes, Dokl. Akad. Nauk SSSR 114 (1957) 490

[64] C Rovi, The nonmultiplicativity of the signature modulo 8 of a fibre bundle is an Arf–Kervaire invariant, Algebr. Geom. Topol. 18 (2018) 1281 | DOI

[65] S Schwede, B E Shipley, Algebras and modules in monoidal model categories, Proc. Lond. Math. Soc. 80 (2000) 491 | DOI

[66] L C Siebenmann, Classification of sliced families of manifold structures, from: "Foundational essays on topological manifolds, smoothings, and triangulations", Ann. of Math. Studies 88, Princeton Univ. Press (1977) 215

[67] D P Sinha, Manifold-theoretic compactifications of configuration spaces, Selecta Math. 10 (2004) 391 | DOI

[68] J D Stasheff, Homotopy associativity of H–spaces, I, Trans. Amer. Math. Soc. 108 (1963) 275 | DOI

[69] J D Stasheff, Homotopy associativity of H–spaces, II, Trans. Amer. Math. Soc. 108 (1963) 293 | DOI

[70] D P Sullivan, Triangulating homotopy equivalences, PhD thesis, Princeton University (1966)

[71] R Thom, Les classes caractéristiques de Pontrjagin des variétés triangulées, from: "Symposium internacional de topología algebraica", Univ. Nac. Autónoma Mexico (1958) 54

[72] S Tillmann, Occupants in simplicial complexes, Algebr. Geom. Topol. 19 (2019) 1265 | DOI

[73] S Tillmann, M S Weiss, Occupants in manifolds, from: "Manifolds and –theory" (editors G Arone, B Johnson, P Lambrechts, B A Munson, I Volić), Contemp. Math. 682, Amer. Math. Soc. (2017) 237 | DOI

[74] I Volić, Configuration space integrals and Taylor towers for spaces of knots, Topology Appl. 153 (2006) 2893 | DOI

[75] I Volić, Finite type knot invariants and the calculus of functors, Compos. Math. 142 (2006) 222 | DOI

[76] C T C Wall, The action of Γ2n on (n−1)–connected 2n–manifolds, Proc. Amer. Math. Soc. 13 (1962) 943 | DOI

[77] T Watanabe, On Kontsevich’s characteristic classes for higher dimensional sphere bundles, I : The simplest class, Math. Z. 262 (2009) 683 | DOI

[78] T Watanabe, On Kontsevich’s characteristic classes for higher-dimensional sphere bundles, II : Higher classes, J. Topol. 2 (2009) 624 | DOI

[79] M S Weiss, Truncated operads and simplicial spaces, Tunis. J. Math. 1 (2019) 109 | DOI

[80] M S Weiss, Configuration categories and homotopy automorphisms, Glasg. Math. J. 62 (2020) 13 | DOI

Cité par Sources :