Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We investigate the relations between algebraic structures, spectral invariants and persistence modules, in the context of monotone Lagrangian Floer homology with Hamiltonian term. Firstly, we use the newly introduced method of filtered continuation elements to prove that the Lagrangian spectral norm controls the barcode of the Hamiltonian perturbation of the Lagrangian submanifold, up to shift, in the bottleneck distance. Moreover, we show that it satisfies Chekanov-type low-energy intersection phenomena, and nondegeneracy theorems. Secondly, we introduce a new averaging method for bounding the spectral norm from above, and apply it to produce precise uniform bounds on the Lagrangian spectral norm in certain closed symplectic manifolds. Finally, by using the theory of persistence modules, we prove that our bounds are in fact sharp in some cases. Along the way we produce a new calculation of the Lagrangian quantum homology of certain Lagrangian submanifolds, and answer a question of Usher.
Kislev, Asaf 1 ; Shelukhin, Egor 2
@article{GT_2021_25_7_a0, author = {Kislev, Asaf and Shelukhin, Egor}, title = {Bounds on spectral norms and barcodes}, journal = {Geometry & topology}, pages = {3257--3350}, publisher = {mathdoc}, volume = {25}, number = {7}, year = {2021}, doi = {10.2140/gt.2021.25.3257}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.3257/} }
Kislev, Asaf; Shelukhin, Egor. Bounds on spectral norms and barcodes. Geometry & topology, Tome 25 (2021) no. 7, pp. 3257-3350. doi : 10.2140/gt.2021.25.3257. http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.3257/
[1] Symplectic cohomology and Viterbo’s theorem, from: "Free loop spaces in geometry and topology" (editors J Latschev, A Oancea), IRMA Lect. Math. Theor. Phys. 24, Eur. Math. Soc. (2015) 271
,[2] Simple homotopy equivalence of nearby Lagrangians, Acta Math. 220 (2018) 207 | DOI
, ,[3] An open string analogue of Viterbo functoriality, Geom. Topol. 14 (2010) 627 | DOI
, ,[4] Khovanov homology from Floer cohomology, J. Amer. Math. Soc. 32 (2019) 1 | DOI
, ,[5] The quantum Euler class and the quantum cohomology of the Grassmannians, Israel J. Math. 117 (2000) 335 | DOI
,[6] A Lagrangian Piunikhin–Salamon–Schwarz morphism and two comparison homomorphisms in Floer homology, Int. Math. Res. Not. 2008 (2008) | DOI
,[7] Embeddings of free groups into asymptotic cones of Hamiltonian diffeomorphisms, J. Topol. Anal. 11 (2019) 467 | DOI
, , , , , , , , , ,[8] On the topology of Lagrangian submanifolds : examples and counter-examples, Port. Math. 62 (2005) 375
,[9] Lagrangian skeletons, periodic geodesic flows and symplectic cuttings, Manuscripta Math. 124 (2007) 533 | DOI
,[10] A beginner’s introduction to Fukaya categories, from: "Contact and symplectic topology" (editors F Bourgeois, V Colin, A Stipsicz), Bolyai Soc. Math. Stud. 26, János Bolyai Math. Soc. (2014) 85 | DOI
,[11] The framed Morse complex and its invariants, from: "Singularities and bifurcations" (editor V I Arnold), Adv. Soviet Math. 21, Amer. Math. Soc. (1994) 93
,[12] Lagrangian intersections and the Serre spectral sequence, Ann. of Math. 166 (2007) 657 | DOI
, ,[13] Induced matchings and the algebraic stability of persistence barcodes, J. Comput. Geom. 6 (2015) 162 | DOI
, ,[14] Manifolds all of whose geodesics are closed, 93, Springer (1978) | DOI
,[15] Lagrangian non-intersections, Geom. Funct. Anal. 16 (2006) 279 | DOI
,[16] Quantum structures for Lagrangian submanifolds, preprint (2007)
, ,[17] A Lagrangian quantum homology, from: "New perspectives and challenges in symplectic field theory" (editors M Abreu, F Lalonde, L Polterovich), CRM Proc. Lecture Notes 49, Amer. Math. Soc. (2009) 1 | DOI
, ,[18] Rigidity and uniruling for Lagrangian submanifolds, Geom. Topol. 13 (2009) 2881 | DOI
, ,[19] Lagrangian shadows and triangulated categories, preprint (2018)
, , ,[20] The Lagrangian cubic equation, Int. Math. Res. Not. 2016 (2016) 2569 | DOI
, ,[21] The action spectrum and C0 symplectic topology, Math. Ann. 380 (2021) 293 | DOI
, , ,[22] scl, 20, Mathematical Society of Japan (2009) | DOI
,[23] Topology and data, Bull. Amer. Math. Soc. 46 (2009) 255 | DOI
,[24] Persistence barcodes for shapes, Int. J. Shape Modeling 11 (2005) 149 | DOI
, , , ,[25] Fukaya algebras via stabilizing divisors, preprint (2015)
, ,[26] Floer trajectories and stabilizing divisors, J. Fixed Point Theory Appl. 19 (2017) 1165 | DOI
, ,[27] A geometric refinement of a theorem of Chekanov, J. Symplectic Geom. 10 (2012) 475 | DOI
,[28] Categorification of Seidel’s representation, Israel J. Math. 211 (2016) 67 | DOI
, ,[29] The structure and stability of persistence modules, Springer (2016) | DOI
, , , ,[30] Lagrangian intersections, symplectic energy, and areas of holomorphic curves, Duke Math. J. 95 (1998) 213 | DOI
,[31] Invariant Finsler metrics on the space of Lagrangian embeddings, Math. Z. 234 (2000) 605 | DOI
,[32] Stability of persistence diagrams, Discrete Comput. Geom. 37 (2007) 103 | DOI
, , ,[33] Rigidity and gluing for Morse and Novikov complexes, J. Eur. Math. Soc. 5 (2003) 343 | DOI
, ,[34] Lagrangian cobordism and metric invariants, J. Differential Geom. 112 (2019) 1 | DOI
, ,[35] Decomposition of pointwise finite-dimensional persistence modules, J. Algebra Appl. 14 (2015) | DOI
,[36] Topological persistence and simplification, Discrete Comput. Geom. 28 (2002) 511 | DOI
, , ,[37] Quasi-morphisms and quasi-states in symplectic topology, from: "Proceedings of the International Congress of Mathematicians" (editors S Y Jang, Y R Kim, D W Lee, I Ye), Kyung Moon Sa (2014) 1147
,[38] Calabi quasimorphism and quantum homology, Int. Math. Res. Not. 2003 (2003) 1635 | DOI
, ,[39] Rigid subsets of symplectic manifolds, Compos. Math. 145 (2009) 773 | DOI
, ,[40] Cuplength estimates on Lagrangian intersections, Comm. Pure Appl. Math. 42 (1989) 335 | DOI
,[41] Contact spectral invariants and persistence, preprint (2015)
,[42] Hamiltonian dynamics on convex symplectic manifolds, Israel J. Math. 159 (2007) 1 | DOI
, ,[43] Unobstructed immersed Lagrangian correspondence and filtered A∞ functor, preprint (2017)
,[44] Lagrangian intersection Floer theory : anomaly and obstruction, I, 46, Amer. Math. Soc. (2009) | DOI
, , , ,[45] Lagrangian intersection Floer theory : anomaly and obstruction, II, 46, Amer. Math. Soc. (2009) | DOI
, , , ,[46] Displacement of polydisks and Lagrangian Floer theory, J. Symplectic Geom. 11 (2013) 231 | DOI
, , , ,[47] Spectral invariants with bulk, quasi-morphisms and Lagrangian Floer theory, 1254, Amer. Math. Soc. (2019) | DOI
, , , ,[48] Arnold conjecture and Gromov–Witten invariant, Topology 38 (1999) 933 | DOI
, ,[49] Covariantly functorial wrapped Floer theory on Liouville sectors, Publ. Math. Inst. Hautes Études Sci. 131 (2020) 73 | DOI
, , ,[50] Barcodes: the persistent topology of data, Bull. Amer. Math. Soc. 45 (2008) 61 | DOI
,[51] Hamiltonian pseudo-rotations of projective spaces, Invent. Math. 214 (2018) 1081 | DOI
, ,[52] Rational homotopy theory and differential forms, 16, Springer (2013) | DOI
, ,[53] Lusternik–Schnirelman-theory for Lagrangian intersections, Ann. Inst. H. Poincaré Anal. Non Linéaire 5 (1988) 465 | DOI
,[54] On the topological properties of symplectic maps, Proc. Roy. Soc. Edinburgh Sect. A 115 (1990) 25 | DOI
,[55] Polyfolds and Fredholm theory, from: "Lectures on geometry" (editor N M J Woodhouse), Oxford Univ. Press (2017) 87 | DOI
,[56] sc-smoothness, retractions and new models for smooth spaces, Discrete Contin. Dyn. Syst. 28 (2010) 665 | DOI
, , ,[57] Applications of polyfold theory, I : The polyfolds of Gromov–Witten theory, 1179, Amer. Math. Soc. (2017) | DOI
, , ,[58] Polyfold and Fredholm theory, 72, Springer (2021) 1001 | DOI
, , ,[59] A relative Seidel morphism and the Albers map, Trans. Amer. Math. Soc. 362 (2010) 1135 | DOI
, ,[60] Homological Lagrangian monodromy, Geom. Topol. 15 (2011) 1617 | DOI
, , ,[61] Coisotropic rigidity and C0–symplectic geometry, Duke Math. J. 164 (2015) 767 | DOI
, , ,[62] Lagrangian circle actions, Algebr. Geom. Topol. 16 (2016) 1309 | DOI
,[63] Piunikhin–Salamon–Schwarz isomorphisms for Lagrangian intersections, Differential Geom. Appl. 22 (2005) 215 | DOI
, ,[64] On operad structures of moduli spaces and string theory, Comm. Math. Phys. 171 (1995) 1 | DOI
, , ,[65] The geometry of symplectic energy, Ann. of Math. 141 (1995) 349 | DOI
, ,[66] Barcodes and area-preserving homeomorphisms, Geom. Topol. 25 (2021) 2713 | DOI
, , ,[67] Spectral invariants in Lagrangian Floer theory, J. Mod. Dyn. 2 (2008) 249 | DOI
,[68] Spectral invariants for monotone Lagrangians, J. Topol. Anal. 10 (2018) 627 | DOI
, ,[69] Floer cohomology of g–equivariant Lagrangian branes, Compos. Math. 152 (2016) 1071 | DOI
, ,[70] Symplectic cuts, Math. Res. Lett. 2 (1995) 247 | DOI
,[71] Coisotropic Hofer–Zehnder capacities and non-squeezing for relative embeddings, J. Symplectic Geom. 18 (2020) 819 | DOI
, ,[72] Moduli of J–holomorphic curves with Lagrangian boundary conditions and open Gromov–Witten invariants for an S1–equivariant pair, preprint (2002)
,[73] Floer homology and Arnold conjecture, J. Differential Geom. 49 (1998) 1
, ,[74] Gromov–Witten invariants and pseudo symplectic capacities, Israel J. Math. 156 (2006) 1 | DOI
,[75] Constructing the virtual fundamental class of a Kuranishi atlas, Algebr. Geom. Topol. 19 (2019) 151 | DOI
,[76] Symplectic packings and algebraic geometry, Invent. Math. 115 (1994) 405 | DOI
, ,[77] J–holomorphic curves and symplectic topology, 52, Amer. Math. Soc. (2012)
, ,[78] Introduction to symplectic topology, Oxford Univ. Press (2017) | DOI
, ,[79] Topological properties of Hamiltonian circle actions, Int. Math. Res. Pap. (2006) | DOI
, ,[80] Partial quasimorphisms and quasistates on cotangent bundles, and symplectic homogenization, J. Mod. Dyn. 6 (2012) 205 | DOI
, , ,[81] A survey of Floer homology for manifolds with contact type boundary or symplectic homology, from: "Symplectic geometry and Floer homology : a survey of the Floer homology for manifolds with contact type boundary or symplectic homology", Ensaios Mat. 7, Soc. Brasil. Mat. (2004) 51
,[82] Riemann–Hilbert problem and application to the perturbation theory of analytic discs, Kyungpook Math. J. 35 (1995) 39
,[83] Floer cohomology, spectral sequences, and the Maslov class of Lagrangian embeddings, Int. Math. Res. Not. 1996 (1996) 305 | DOI
,[84] Symplectic topology as the geometry of action functional, II : Pants product and cohomological invariants, Comm. Anal. Geom. 7 (1999) 1 | DOI
,[85] Floer homology and its continuity for non-compact Lagrangian submanifolds, Turkish J. Math. 25 (2001) 103
,[86] Chain level Floer theory and Hofer’s geometry of the Hamiltonian diffeomorphism group, Asian J. Math. 6 (2002) 579 | DOI
,[87] Construction of spectral invariants of Hamiltonian paths on closed symplectic manifolds, from: "The breadth of symplectic and Poisson geometry" (editors J E Marsden, T S Ratiu), Progr. Math. 232, Birkhäuser (2005) 525 | DOI
,[88] Spectral invariants, analysis of the Floer moduli space, and geometry of the Hamiltonian diffeomorphism group, Duke Math. J. 130 (2005) 199 | DOI
,[89] Symplectic topology and Floer homology, I : Symplectic geometry and pseudoholomorphic curves, 28, Cambridge Univ. Press (2015) | DOI
,[90] Symplectic topology and Floer homology, II : Floer homology and its applications, 29, Cambridge Univ. Press (2015) | DOI
,[91] Floer trajectories with immersed nodes and scale-dependent gluing, J. Symplectic Geom. 9 (2011) 483 | DOI
, ,[92] An algebraic approach to virtual fundamental cycles on moduli spaces of pseudo-holomorphic curves, Geom. Topol. 20 (2016) 779 | DOI
,[93] Symplectic Floer–Donaldson theory and quantum cohomology, from: "Contact and symplectic geometry" (editor C B Thomas), Publ. Newton Inst. 8, Cambridge Univ. Press (1996) 171
, , ,[94] Symplectic displacement energy for Lagrangian submanifolds, Ergodic Theory Dynam. Systems 13 (1993) 357 | DOI
,[95] The geometry of the group of symplectic diffeomorphisms, Birkhäuser (2001) | DOI
,[96] Function theory on symplectic manifolds, 34, Amer. Math. Soc. (2014) | DOI
, ,[97] Autonomous Hamiltonian flows, Hofer’s geometry and persistence modules, Selecta Math. 22 (2016) 227 | DOI
, ,[98] Persistence modules with operators in Morse and Floer theory, Mosc. Math. J. 17 (2017) 757 | DOI
, , ,[99] The Maslov index for paths, Topology 32 (1993) 827 | DOI
, ,[100] A quantum cup-length estimate for symplectic fixed points, Invent. Math. 133 (1998) 353 | DOI
,[101] On the action spectrum for closed symplectically aspherical manifolds, Pacific J. Math. 193 (2000) 419 | DOI
,[102] π1 of symplectic automorphism groups and invertibles in quantum homology rings, Geom. Funct. Anal. 7 (1997) 1046 | DOI
,[103] Graded Lagrangian submanifolds, Bull. Soc. Math. France 128 (2000) 103 | DOI
,[104] Fukaya categories and Picard–Lefschetz theory, Eur. Math. Soc. (2008) | DOI
,[105] Disjoinable Lagrangian spheres and dilations, Invent. Math. 197 (2014) 299 | DOI
,[106] C0–limits of Hamiltonian paths and the Oh–Schwarz spectral invariants, Int. Math. Res. Not. 2013 (2013) 4920 | DOI
,[107] Viterbo conjecture for Zoll symmetric spaces, preprint (2018)
,[108] On the Hofer–Zehnder conjecture, preprint (2019)
,[109] Geometry of symplectic flux and Lagrangian torus fibrations, preprint (2018)
, , ,[110] Combinatorial Floer homology, 1080, Amer. Math. Soc. (2014)
, , ,[111] Floer cohomology and pencils of quadrics, Invent. Math. 189 (2012) 149 | DOI
,[112] The topology of fibre bundles, 14, Princeton Univ. Press (1951)
,[113] A quasi-isometric embedding into the group of Hamiltonian diffeomorphisms with Hofer’s metric, Israel J. Math. 223 (2018) 141 | DOI
,[114] Spectral numbers in Floer theories, Compos. Math. 144 (2008) 1581 | DOI
,[115] The sharp energy-capacity inequality, Commun. Contemp. Math. 12 (2010) 457 | DOI
,[116] Boundary depth in Floer theory and its applications to Hamiltonian dynamics and coisotropic submanifolds, Israel J. Math. 184 (2011) 1 | DOI
,[117] Hofer’s metrics and boundary depth, Ann. Sci. Éc. Norm. Supér. 46 (2013) 57 | DOI
,[118] Observations on the Hofer distance between closed subsets, Math. Res. Lett. 22 (2015) 1805 | DOI
,[119] Persistent homology and Floer–Novikov theory, Geom. Topol. 20 (2016) 3333 | DOI
, ,[120] Intersection de sous-variétés lagrangiennes, fonctionnelles d’action et indice des systèmes hamiltoniens, Bull. Soc. Math. France 115 (1987) 361
,[121] Symplectic topology as the geometry of generating functions, Math. Ann. 292 (1992) 685 | DOI
,[122] The Lagrangian Floer-quantum-PSS package and canonical orientations in Floer theory, preprint (2015)
,[123] p–cyclic persistent homology and Hofer distance, J. Symplectic Geom. 17 (2019) 857 | DOI
,[124] Computing persistent homology, Discrete Comput. Geom. 33 (2005) 249 | DOI
, ,Cité par Sources :