The Legendrian Whitney trick
Geometry & topology, Tome 25 (2021) no. 6, pp. 3229-3256.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove the Legendrian Whitney trick, which allows for the removal of intersections between codimension-2 contact submanifolds and Legendrian submanifolds, assuming such a smooth cancellation is possible. We apply this technique to prove the first known existence h–principle for codimension-2 isocontact embeddings, with a prescribed arbitrary contact structure on its domain.

DOI : 10.2140/gt.2021.25.3229
Keywords: contact structure, isocontact embeddings, $h$–principle

Casals, Roger 1 ; Pancholi, Dishant M 2 ; Presas, Francisco 3

1 Department of Mathematics, University of California, Davis, Davis, CA, United States
2 Institute for Mathematical Sciences, Chennai, India
3 Instituto de Ciencias Matemáticas, CSIC–UAM–UC3M–UCM, Madrid, Spain
@article{GT_2021_25_6_a9,
     author = {Casals, Roger and Pancholi, Dishant M and Presas, Francisco},
     title = {The {Legendrian} {Whitney} trick},
     journal = {Geometry & topology},
     pages = {3229--3256},
     publisher = {mathdoc},
     volume = {25},
     number = {6},
     year = {2021},
     doi = {10.2140/gt.2021.25.3229},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.3229/}
}
TY  - JOUR
AU  - Casals, Roger
AU  - Pancholi, Dishant M
AU  - Presas, Francisco
TI  - The Legendrian Whitney trick
JO  - Geometry & topology
PY  - 2021
SP  - 3229
EP  - 3256
VL  - 25
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.3229/
DO  - 10.2140/gt.2021.25.3229
ID  - GT_2021_25_6_a9
ER  - 
%0 Journal Article
%A Casals, Roger
%A Pancholi, Dishant M
%A Presas, Francisco
%T The Legendrian Whitney trick
%J Geometry & topology
%D 2021
%P 3229-3256
%V 25
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.3229/
%R 10.2140/gt.2021.25.3229
%F GT_2021_25_6_a9
Casals, Roger; Pancholi, Dishant M; Presas, Francisco. The Legendrian Whitney trick. Geometry & topology, Tome 25 (2021) no. 6, pp. 3229-3256. doi : 10.2140/gt.2021.25.3229. http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.3229/

[1] M S Borman, Y Eliashberg, E Murphy, Existence and classification of overtwisted contact structures in all dimensions, Acta Math. 215 (2015) 281 | DOI

[2] R Casals, J B Etnyre, Non-simplicity of isocontact embeddings in all higher dimensions, Geom. Funct. Anal. 30 (2020) 1 | DOI

[3] R Casals, E Murphy, F Presas, Geometric criteria for overtwistedness, J. Amer. Math. Soc. 32 (2019) 563 | DOI

[4] R Casals, J L Pérez, Á Del Pino, F Presas, Existence h–principle for Engel structures, Invent. Math. 210 (2017) 417 | DOI

[5] R Casals, Á Del Pino, Classification of Engel knots, Math. Ann. 371 (2018) 391 | DOI

[6] A J Casson, Three lectures on new-infinite constructions in 4–dimensional manifolds, from: "À la recherche de la topologie perdue" (editors L Guillou, A Marin), Progr. Math. 62, Birkhäuser (1986) 201

[7] V Colin, Livres ouverts en géométrie de contact (d’après Emmanuel Giroux), from: "Séminaire Bourbaki, 2006/2007", Astérisque 317, Soc. Math. France (2008) 91

[8] Y Eliashberg, Classification of overtwisted contact structures on 3–manifolds, Invent. Math. 98 (1989) 623 | DOI

[9] Y Eliashberg, N M Mishachev, Wrinkling of smooth mappings and its applications, I, Invent. Math. 130 (1997) 345 | DOI

[10] Y Eliashberg, N Mishachev, Introduction to the h–principle, 48, Amer. Math. Soc. (2002) | DOI

[11] J B Etnyre, Legendrian and transversal knots, from: "Handbook of knot theory" (editors W Menasco, M Thistlethwaite), Elsevier (2005) 105 | DOI

[12] J B Etnyre, R Furukawa, Braided embeddings of contact 3–manifolds in the standard contact 5–sphere, J. Topol. 10 (2017) 412 | DOI

[13] J B Etnyre, Y Lekili, Embedding all contact 3–manifolds in a fixed contact 5-manifold, J. Lond. Math. Soc. 99 (2019) 52 | DOI

[14] M H Freedman, The topology of four-dimensional manifolds, J. Differential Geometry 17 (1982) 357

[15] H Geiges, An introduction to contact topology, 109, Cambridge Univ. Press (2008) | DOI

[16] T G Goodwillie, A multiple disjunction lemma for smooth concordance embeddings, 431, Amer. Math. Soc. (1990) | DOI

[17] M Gromov, Partial differential relations, 9, Springer (1986) | DOI

[18] A Haefliger, Differentiable imbeddings, Bull. Amer. Math. Soc. 67 (1961) 109 | DOI

[19] A Haefliger, Knotted (4k−1)–spheres in 6k–space, Ann. of Math. 75 (1962) 452 | DOI

[20] A Hatcher, Algebraic topology, Cambridge Univ. Press (2002)

[21] A Hatcher, Topological moduli spaces of knots, preprint (2002)

[22] K Honda, On the classification of tight contact structures, I, Geom. Topol. 4 (2000) 309 | DOI

[23] K Honda, Y Huang, Convex hypersurface theory in contact topology, preprint (2019)

[24] T Ito, K Kawamuro, Overtwisted discs in planar open books, Internat. J. Math. 26 (2015) | DOI

[25] R Kirby, The Whitney trick, (2013)

[26] O Van Koert, K Niederkrüger, Open book decompositions for contact structures on Brieskorn manifolds, Proc. Amer. Math. Soc. 133 (2005) 3679 | DOI

[27] O Lazarev, Maximal contact and symplectic structures, J. Topol. 13 (2020) 1058 | DOI

[28] I Mabillard, U Wagner, Eliminating Tverberg points, I : An analogue of the Whitney trick, from: "Computational geometry", ACM (2014) 171

[29] J Milnor, Lectures on the h–cobordism theorem, Princeton Univ. Press (1965)

[30] D M Pancholi, S Pandit, Iso-contact embeddings of manifolds in co-dimension 2, preprint (2018)

[31] A Shapiro, Obstructions to the imbedding of a complex in a euclidean space, I : The first obstruction, Ann. of Math. 66 (1957) 256 | DOI

[32] S Smale, On the structure of manifolds, Amer. J. Math. 84 (1962) 387 | DOI

[33] T Vogel, Non-loose unknots, overtwisted discs, and the contact mapping class group of S3, Geom. Funct. Anal. 28 (2018) 228 | DOI

[34] A Wand, Tightness is preserved by Legendrian surgery, Ann. of Math. 182 (2015) 723 | DOI

[35] H Whitney, Differentiable manifolds, Ann. of Math. 37 (1936) 645 | DOI

[36] H Whitney, The self-intersections of a smooth n–manifold in 2n–space, Ann. of Math. 45 (1944) 220 | DOI

Cité par Sources :