Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We prove the Legendrian Whitney trick, which allows for the removal of intersections between codimension- contact submanifolds and Legendrian submanifolds, assuming such a smooth cancellation is possible. We apply this technique to prove the first known existence –principle for codimension- isocontact embeddings, with a prescribed arbitrary contact structure on its domain.
Casals, Roger 1 ; Pancholi, Dishant M 2 ; Presas, Francisco 3
@article{GT_2021_25_6_a9, author = {Casals, Roger and Pancholi, Dishant M and Presas, Francisco}, title = {The {Legendrian} {Whitney} trick}, journal = {Geometry & topology}, pages = {3229--3256}, publisher = {mathdoc}, volume = {25}, number = {6}, year = {2021}, doi = {10.2140/gt.2021.25.3229}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.3229/} }
TY - JOUR AU - Casals, Roger AU - Pancholi, Dishant M AU - Presas, Francisco TI - The Legendrian Whitney trick JO - Geometry & topology PY - 2021 SP - 3229 EP - 3256 VL - 25 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.3229/ DO - 10.2140/gt.2021.25.3229 ID - GT_2021_25_6_a9 ER -
Casals, Roger; Pancholi, Dishant M; Presas, Francisco. The Legendrian Whitney trick. Geometry & topology, Tome 25 (2021) no. 6, pp. 3229-3256. doi : 10.2140/gt.2021.25.3229. http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.3229/
[1] Existence and classification of overtwisted contact structures in all dimensions, Acta Math. 215 (2015) 281 | DOI
, , ,[2] Non-simplicity of isocontact embeddings in all higher dimensions, Geom. Funct. Anal. 30 (2020) 1 | DOI
, ,[3] Geometric criteria for overtwistedness, J. Amer. Math. Soc. 32 (2019) 563 | DOI
, , ,[4] Existence h–principle for Engel structures, Invent. Math. 210 (2017) 417 | DOI
, , , ,[5] Classification of Engel knots, Math. Ann. 371 (2018) 391 | DOI
, ,[6] Three lectures on new-infinite constructions in 4–dimensional manifolds, from: "À la recherche de la topologie perdue" (editors L Guillou, A Marin), Progr. Math. 62, Birkhäuser (1986) 201
,[7] Livres ouverts en géométrie de contact (d’après Emmanuel Giroux), from: "Séminaire Bourbaki, 2006/2007", Astérisque 317, Soc. Math. France (2008) 91
,[8] Classification of overtwisted contact structures on 3–manifolds, Invent. Math. 98 (1989) 623 | DOI
,[9] Wrinkling of smooth mappings and its applications, I, Invent. Math. 130 (1997) 345 | DOI
, ,[10] Introduction to the h–principle, 48, Amer. Math. Soc. (2002) | DOI
, ,[11] Legendrian and transversal knots, from: "Handbook of knot theory" (editors W Menasco, M Thistlethwaite), Elsevier (2005) 105 | DOI
,[12] Braided embeddings of contact 3–manifolds in the standard contact 5–sphere, J. Topol. 10 (2017) 412 | DOI
, ,[13] Embedding all contact 3–manifolds in a fixed contact 5-manifold, J. Lond. Math. Soc. 99 (2019) 52 | DOI
, ,[14] The topology of four-dimensional manifolds, J. Differential Geometry 17 (1982) 357
,[15] An introduction to contact topology, 109, Cambridge Univ. Press (2008) | DOI
,[16] A multiple disjunction lemma for smooth concordance embeddings, 431, Amer. Math. Soc. (1990) | DOI
,[17] Partial differential relations, 9, Springer (1986) | DOI
,[18] Differentiable imbeddings, Bull. Amer. Math. Soc. 67 (1961) 109 | DOI
,[19] Knotted (4k−1)–spheres in 6k–space, Ann. of Math. 75 (1962) 452 | DOI
,[20] Algebraic topology, Cambridge Univ. Press (2002)
,[21] Topological moduli spaces of knots, preprint (2002)
,[22] On the classification of tight contact structures, I, Geom. Topol. 4 (2000) 309 | DOI
,[23] Convex hypersurface theory in contact topology, preprint (2019)
, ,[24] Overtwisted discs in planar open books, Internat. J. Math. 26 (2015) | DOI
, ,[25] The Whitney trick, (2013)
,[26] Open book decompositions for contact structures on Brieskorn manifolds, Proc. Amer. Math. Soc. 133 (2005) 3679 | DOI
, ,[27] Maximal contact and symplectic structures, J. Topol. 13 (2020) 1058 | DOI
,[28] Eliminating Tverberg points, I : An analogue of the Whitney trick, from: "Computational geometry", ACM (2014) 171
, ,[29] Lectures on the h–cobordism theorem, Princeton Univ. Press (1965)
,[30] Iso-contact embeddings of manifolds in co-dimension 2, preprint (2018)
, ,[31] Obstructions to the imbedding of a complex in a euclidean space, I : The first obstruction, Ann. of Math. 66 (1957) 256 | DOI
,[32] On the structure of manifolds, Amer. J. Math. 84 (1962) 387 | DOI
,[33] Non-loose unknots, overtwisted discs, and the contact mapping class group of S3, Geom. Funct. Anal. 28 (2018) 228 | DOI
,[34] Tightness is preserved by Legendrian surgery, Ann. of Math. 182 (2015) 723 | DOI
,[35] Differentiable manifolds, Ann. of Math. 37 (1936) 645 | DOI
,[36] The self-intersections of a smooth n–manifold in 2n–space, Ann. of Math. 45 (1944) 220 | DOI
,Cité par Sources :