Vanishing cycles, plane curve singularities and framed mapping class groups
Geometry & topology, Tome 25 (2021) no. 6, pp. 3179-3228.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let f be an isolated plane curve singularity with Milnor fiber of genus at least 5. For all such f, we give an intrinsic description of the geometric monodromy group that does not invoke the notion of the versal unfolding space, and an easy criterion to decide if a given simple closed curve in the Milnor fiber is a vanishing cycle or not. With the lone exception of singularities of type An and Dn, we find that both are determined completely by a canonical framing of the Milnor fiber induced by the Hamiltonian vector field associated to f. As a corollary we answer a question of Sullivan concerning the injectivity of monodromy groups for all singularities having Milnor fiber of genus at least 7.

DOI : 10.2140/gt.2021.25.3179
Keywords: singularity theory, mapping class groups, low dimensional topology

Portilla Cuadrado, Pablo 1 ; Salter, Nick 2

1 Departamento de Matemáticas Básicas, CIMAT, Guanajuato, Mexico
2 Department of Mathematics, Columbia University, New York, NY, United States
@article{GT_2021_25_6_a8,
     author = {Portilla Cuadrado, Pablo and Salter, Nick},
     title = {Vanishing cycles, plane curve singularities and framed mapping class groups},
     journal = {Geometry & topology},
     pages = {3179--3228},
     publisher = {mathdoc},
     volume = {25},
     number = {6},
     year = {2021},
     doi = {10.2140/gt.2021.25.3179},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.3179/}
}
TY  - JOUR
AU  - Portilla Cuadrado, Pablo
AU  - Salter, Nick
TI  - Vanishing cycles, plane curve singularities and framed mapping class groups
JO  - Geometry & topology
PY  - 2021
SP  - 3179
EP  - 3228
VL  - 25
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.3179/
DO  - 10.2140/gt.2021.25.3179
ID  - GT_2021_25_6_a8
ER  - 
%0 Journal Article
%A Portilla Cuadrado, Pablo
%A Salter, Nick
%T Vanishing cycles, plane curve singularities and framed mapping class groups
%J Geometry & topology
%D 2021
%P 3179-3228
%V 25
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.3179/
%R 10.2140/gt.2021.25.3179
%F GT_2021_25_6_a8
Portilla Cuadrado, Pablo; Salter, Nick. Vanishing cycles, plane curve singularities and framed mapping class groups. Geometry & topology, Tome 25 (2021) no. 6, pp. 3179-3228. doi : 10.2140/gt.2021.25.3179. http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.3179/

[1] N A’Campo, Sur la monodromie des singularités isolées d’hypersurfaces complexes, Ann. Inst. Fourier (Grenoble) 23 (1973) 1 | DOI

[2] N A’Campo, Le groupe de monodromie du déploiement des singularités isolées de courbes planes, I, Math. Ann. 213 (1975) 1 | DOI

[3] N A’Campo, Le groupe de monodromie du déploiement des singularités isolées de courbes planes, II, from: "Proceedings of the International Congress of Mathematicians" (editor R D James) (1975) 395

[4] N A’Campo, Real deformations and complex topology of plane curve singularities, Ann. Fac. Sci. Toulouse Math. 8 (1999) 5 | DOI

[5] N A’Campo, Quadratic vanishing cycles, reduction curves and reduction of the monodromy group of plane curve singularities, Tohoku Math. J. 53 (2001) 533 | DOI

[6] V I Arnold, S M Gusein-Zade, A N Varchenko, Singularities of differentiable maps, II: Monodromy and asymptotics of integrals, Springer (1988) | DOI

[7] E Brieskorn, H Knörrer, Plane algebraic curves, Birkhäuser (1986) | DOI

[8] A Calderon, N Salter, Framed mapping class groups and the monodromy of strata of abelian differentials, preprint (2020)

[9] A Calderon, N Salter, Relative homological representations of framed mapping class groups, Bull. Lond. Math. Soc. 53 (2021) 204 | DOI

[10] R Castellini, The topology of A’Campo deformations of singularities : an approach through the lotus, PhD thesis, Université de Lille 1 (2015)

[11] B Farb, D Margalit, A primer on mapping class groups, 49, Princeton Univ. Press (2012)

[12] A M Gabrièlov, Bifurcations, Dynkin diagrams and the modality of isolated singularities, Funkcional. Anal. i Priložen. 8 (1974) 7

[13] S M Guseĭn-Zade, Intersection matrices for certain singularities of functions of two variables, Funkcional. Anal. i Priložen. 8 (1974) 11

[14] M Ishikawa, Plumbing constructions of connected divides and the Milnor fibers of plane curve singularities, Indag. Math. 13 (2002) 499 | DOI

[15] T De Jong, D Van Straten, Deformation theory of sandwiched singularities, Duke Math. J. 95 (1998) 451 | DOI

[16] B Khanedani, T Suwa, First variation of holomorphic forms and some applications, Hokkaido Math. J. 26 (1997) 323 | DOI

[17] C Labruere, Generalized braid groups and mapping class groups, J. Knot Theory Ramifications 6 (1997) 715 | DOI

[18] J Milnor, Singular points of complex hypersurfaces, 61, Princeton Univ. Press (1968)

[19] B Perron, J P Vannier, Groupe de monodromie géométrique des singularités simples, Math. Ann. 306 (1996) 231 | DOI

[20] O Randal-Williams, Homology of the moduli spaces and mapping class groups of framed, r–Spin and Pin surfaces, J. Topol. 7 (2014) 155 | DOI

[21] N Salter, Monodromy and vanishing cycles in toric surfaces, Invent. Math. 216 (2019) 153 | DOI

[22] B Wajnryb, On the monodromy group of plane curve singularities, Math. Ann. 246 (1979/80) 141 | DOI

[23] B Wajnryb, Artin groups and geometric monodromy, Invent. Math. 138 (1999) 563 | DOI

Cité par Sources :