Global rigidity of some abelian-by-cyclic group actions on đť•‹2
Geometry & topology, Tome 25 (2021) no. 6, pp. 3133-3178.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

For groups of diffeomorphisms of đť•‹2 containing an Anosov diffeomorphism, we give a complete classification for polycyclic abelian-by-cyclic group actions on đť•‹2 up to both topological conjugacy and smooth conjugacy under mild assumptions. Along the way, we also prove a Tits alternative-type theorem for some groups of diffeomorphisms of đť•‹2.

DOI : 10.2140/gt.2021.25.3133
Keywords: ABC group actions, Tits alternative, rigidity, Anosov

Hurtado, Sebastian 1 ; Xue, Jinxin 2

1 Department of Mathematics, University of Chicago, Chicago, IL, United States
2 Yau Mathematical Sciences Center and Department of Mathematics, Tsinghua University, Beijing, China
@article{GT_2021_25_6_a7,
     author = {Hurtado, Sebastian and Xue, Jinxin},
     title = {Global rigidity of some abelian-by-cyclic group actions on {\ensuremath{\mathbb{T}}2}},
     journal = {Geometry & topology},
     pages = {3133--3178},
     publisher = {mathdoc},
     volume = {25},
     number = {6},
     year = {2021},
     doi = {10.2140/gt.2021.25.3133},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.3133/}
}
TY  - JOUR
AU  - Hurtado, Sebastian
AU  - Xue, Jinxin
TI  - Global rigidity of some abelian-by-cyclic group actions on đť•‹2
JO  - Geometry & topology
PY  - 2021
SP  - 3133
EP  - 3178
VL  - 25
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.3133/
DO  - 10.2140/gt.2021.25.3133
ID  - GT_2021_25_6_a7
ER  - 
%0 Journal Article
%A Hurtado, Sebastian
%A Xue, Jinxin
%T Global rigidity of some abelian-by-cyclic group actions on đť•‹2
%J Geometry & topology
%D 2021
%P 3133-3178
%V 25
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.3133/
%R 10.2140/gt.2021.25.3133
%F GT_2021_25_6_a7
Hurtado, Sebastian; Xue, Jinxin. Global rigidity of some abelian-by-cyclic group actions on đť•‹2. Geometry & topology, Tome 25 (2021) no. 6, pp. 3133-3178. doi : 10.2140/gt.2021.25.3133. http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.3133/

[1] J Alonso, N Guelman, C Rivas, J Xavier, One some planar Baumslag–Solitar actions, preprint (2017)

[2] J Alonso, C Rivas, J Xavier, Planar Baumslag–Solitar actions, preprint (2017)

[3] M Asaoka, Rigidity of certain solvable actions on the sphere, Geom. Topol. 16 (2012) 1835 | DOI

[4] M Asaoka, Rigidity of certain solvable actions on the torus, from: "Geometry, dynamics, and foliations 2013" (editors T Asuke, S Matsumoto, Y Mitsumatsu), Adv. Stud. Pure Math. 72, Math. Soc. Japan (2017) 269 | DOI

[5] C Bonatti, L J DĂ­az, M Viana, Dynamics beyond uniform hyperbolicity: a global geometric and probabilistic perspective, 102, Springer (2005) | DOI

[6] C Bonatti, S H Kim, T Koberda, M Triestino, Small C1 actions of semidirect products on compact manifolds, Algebr. Geom. Topol. 20 (2020) 3183 | DOI

[7] C Bonatti, I Monteverde, A Navas, C Rivas, Rigidity for C1 actions on the interval arising from hyperbolicity, I : Solvable groups, Math. Z. 286 (2017) 919 | DOI

[8] M Brin, G Stuck, Introduction to dynamical systems, Cambridge Univ. Press (2002) | DOI

[9] L Burslem, A Wilkinson, Global rigidity of solvable group actions on S1, Geom. Topol. 8 (2004) 877 | DOI

[10] B Farb, J Franks, Groups of homeomorphisms of one-manifolds, I: Actions of nonlinear groups, from: "What’s next ?" (editor D P Thurston), Ann. of Math. Stud. 205, Princeton Univ. Press (2020) 116 | DOI

[11] D Fisher, Groups acting on manifolds : around the Zimmer program, from: "Geometry, rigidity, and group actions" (editors B Farb, D Fisher), Univ. of Chicago Press (2011) 72 | DOI

[12] J Franks, Anosov diffeomorphisms on tori, Trans. Amer. Math. Soc. 145 (1969) 117 | DOI

[13] J Franks, M Handel, Entropy zero area preserving diffeomorphisms of S2, Geom. Topol. 16 (2012) 2187 | DOI

[14] É Ghys, V Sergiescu, Sur un groupe remarquable de difféomorphismes du cercle, Comment. Math. Helv. 62 (1987) 185 | DOI

[15] A Gogolev, Smooth conjugacy of Anosov diffeomorphisms on higher-dimensional tori, J. Mod. Dyn. 2 (2008) 645 | DOI

[16] A Gogolev, Bootstrap for local rigidity of Anosov automorphisms on the 3–torus, Comm. Math. Phys. 352 (2017) 439 | DOI

[17] A Gogolev, B Kalinin, V Sadovskaya, Local rigidity for Anosov automorphisms, Math. Res. Lett. 18 (2011) 843 | DOI

[18] N Guelman, I Liousse, C1–actions of Baumslag–Solitar groups on S1, Algebr. Geom. Topol. 11 (2011) 1701 | DOI

[19] N Guelman, I Liousse, Actions of Baumslag–Solitar groups on surfaces, Discrete Contin. Dyn. Syst. 33 (2013) 1945 | DOI

[20] N Guelman, I Liousse, Any Baumslag–Solitar action on surfaces with a pseudo–Anosov element has a finite orbit, Ergodic Theory Dynam. Systems 39 (2019) 3353 | DOI

[21] R A Horn, C R Johnson, Topics in matrix analysis, Cambridge Univ. Press (1991) | DOI

[22] J L Journé, A regularity lemma for functions of several variables, Rev. Mat. Iberoamericana 4 (1988) 187 | DOI

[23] A Katok, B Hasselblatt, Introduction to the modern theory of dynamical systems, 54, Cambridge Univ. Press (1995) | DOI

[24] Y Katznelson, Ergodic automorphisms of Tn are Bernoulli shifts, Israel J. Math. 10 (1971) 186 | DOI

[25] Y Katznelson, D Ornstein, The differentiability of the conjugation of certain diffeomorphisms of the circle, Ergodic Theory Dynam. Systems 9 (1989) 643 | DOI

[26] Q Liu, Local rigidity of certain solvable group actions on tori, Discrete Contin. Dyn. Syst. 41 (2021) 553 | DOI

[27] R De La Llave, Smooth conjugacy and S-R-B measures for uniformly and non-uniformly hyperbolic systems, Comm. Math. Phys. 150 (1992) 289 | DOI

[28] A E Mccarthy, Rigidity of trivial actions of abelian-by-cyclic groups, Proc. Amer. Math. Soc. 138 (2010) 1395 | DOI

[29] M Misiurewicz, K Ziemian, Rotation sets for maps of tori, J. London Math. Soc. 40 (1989) 490 | DOI

[30] A Navas, Groups of circle diffeomorphisms, Univ. of Chicago Press (2011) | DOI

[31] R Saghin, J Yang, Lyapunov exponents and rigidity of Anosov automorphisms and skew products, Adv. Math. 355 (2019) | DOI

[32] W M Schmidt, Diophantine approximation, 785, Springer (1980) | DOI

[33] Z J Wang, New examples of local rigidity of algebraic partially hyperbolic actions, preprint (2019)

[34] A Wilkinson, J Xue, Rigidity of some abelian-by-cyclic solvable group actions on TN, Comm. Math. Phys. 376 (2020) 1223 | DOI

Cité par Sources :