Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
For groups of diffeomorphisms of containing an Anosov diffeomorphism, we give a complete classification for polycyclic abelian-by-cyclic group actions on up to both topological conjugacy and smooth conjugacy under mild assumptions. Along the way, we also prove a Tits alternative-type theorem for some groups of diffeomorphisms of .
Hurtado, Sebastian 1 ; Xue, Jinxin 2
@article{GT_2021_25_6_a7, author = {Hurtado, Sebastian and Xue, Jinxin}, title = {Global rigidity of some abelian-by-cyclic group actions on {\ensuremath{\mathbb{T}}2}}, journal = {Geometry & topology}, pages = {3133--3178}, publisher = {mathdoc}, volume = {25}, number = {6}, year = {2021}, doi = {10.2140/gt.2021.25.3133}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.3133/} }
TY - JOUR AU - Hurtado, Sebastian AU - Xue, Jinxin TI - Global rigidity of some abelian-by-cyclic group actions on đť•‹2 JO - Geometry & topology PY - 2021 SP - 3133 EP - 3178 VL - 25 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.3133/ DO - 10.2140/gt.2021.25.3133 ID - GT_2021_25_6_a7 ER -
Hurtado, Sebastian; Xue, Jinxin. Global rigidity of some abelian-by-cyclic group actions on đť•‹2. Geometry & topology, Tome 25 (2021) no. 6, pp. 3133-3178. doi : 10.2140/gt.2021.25.3133. http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.3133/
[1] One some planar Baumslag–Solitar actions, preprint (2017)
, , , ,[2] Planar Baumslag–Solitar actions, preprint (2017)
, , ,[3] Rigidity of certain solvable actions on the sphere, Geom. Topol. 16 (2012) 1835 | DOI
,[4] Rigidity of certain solvable actions on the torus, from: "Geometry, dynamics, and foliations 2013" (editors T Asuke, S Matsumoto, Y Mitsumatsu), Adv. Stud. Pure Math. 72, Math. Soc. Japan (2017) 269 | DOI
,[5] Dynamics beyond uniform hyperbolicity: a global geometric and probabilistic perspective, 102, Springer (2005) | DOI
, , ,[6] Small C1 actions of semidirect products on compact manifolds, Algebr. Geom. Topol. 20 (2020) 3183 | DOI
, , , ,[7] Rigidity for C1 actions on the interval arising from hyperbolicity, I : Solvable groups, Math. Z. 286 (2017) 919 | DOI
, , , ,[8] Introduction to dynamical systems, Cambridge Univ. Press (2002) | DOI
, ,[9] Global rigidity of solvable group actions on S1, Geom. Topol. 8 (2004) 877 | DOI
, ,[10] Groups of homeomorphisms of one-manifolds, I: Actions of nonlinear groups, from: "What’s next ?" (editor D P Thurston), Ann. of Math. Stud. 205, Princeton Univ. Press (2020) 116 | DOI
, ,[11] Groups acting on manifolds : around the Zimmer program, from: "Geometry, rigidity, and group actions" (editors B Farb, D Fisher), Univ. of Chicago Press (2011) 72 | DOI
,[12] Anosov diffeomorphisms on tori, Trans. Amer. Math. Soc. 145 (1969) 117 | DOI
,[13] Entropy zero area preserving diffeomorphisms of S2, Geom. Topol. 16 (2012) 2187 | DOI
, ,[14] Sur un groupe remarquable de difféomorphismes du cercle, Comment. Math. Helv. 62 (1987) 185 | DOI
, ,[15] Smooth conjugacy of Anosov diffeomorphisms on higher-dimensional tori, J. Mod. Dyn. 2 (2008) 645 | DOI
,[16] Bootstrap for local rigidity of Anosov automorphisms on the 3–torus, Comm. Math. Phys. 352 (2017) 439 | DOI
,[17] Local rigidity for Anosov automorphisms, Math. Res. Lett. 18 (2011) 843 | DOI
, , ,[18] C1–actions of Baumslag–Solitar groups on S1, Algebr. Geom. Topol. 11 (2011) 1701 | DOI
, ,[19] Actions of Baumslag–Solitar groups on surfaces, Discrete Contin. Dyn. Syst. 33 (2013) 1945 | DOI
, ,[20] Any Baumslag–Solitar action on surfaces with a pseudo–Anosov element has a finite orbit, Ergodic Theory Dynam. Systems 39 (2019) 3353 | DOI
, ,[21] Topics in matrix analysis, Cambridge Univ. Press (1991) | DOI
, ,[22] A regularity lemma for functions of several variables, Rev. Mat. Iberoamericana 4 (1988) 187 | DOI
,[23] Introduction to the modern theory of dynamical systems, 54, Cambridge Univ. Press (1995) | DOI
, ,[24] Ergodic automorphisms of Tn are Bernoulli shifts, Israel J. Math. 10 (1971) 186 | DOI
,[25] The differentiability of the conjugation of certain diffeomorphisms of the circle, Ergodic Theory Dynam. Systems 9 (1989) 643 | DOI
, ,[26] Local rigidity of certain solvable group actions on tori, Discrete Contin. Dyn. Syst. 41 (2021) 553 | DOI
,[27] Smooth conjugacy and S-R-B measures for uniformly and non-uniformly hyperbolic systems, Comm. Math. Phys. 150 (1992) 289 | DOI
,[28] Rigidity of trivial actions of abelian-by-cyclic groups, Proc. Amer. Math. Soc. 138 (2010) 1395 | DOI
,[29] Rotation sets for maps of tori, J. London Math. Soc. 40 (1989) 490 | DOI
, ,[30] Groups of circle diffeomorphisms, Univ. of Chicago Press (2011) | DOI
,[31] Lyapunov exponents and rigidity of Anosov automorphisms and skew products, Adv. Math. 355 (2019) | DOI
, ,[32] Diophantine approximation, 785, Springer (1980) | DOI
,[33] New examples of local rigidity of algebraic partially hyperbolic actions, preprint (2019)
,[34] Rigidity of some abelian-by-cyclic solvable group actions on TN, Comm. Math. Phys. 376 (2020) 1223 | DOI
, ,Cité par Sources :