A homology theory for tropical cycles on integral affine manifolds and a perfect pairing
Geometry & topology, Tome 25 (2021) no. 6, pp. 3079-3132.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We introduce a cap product pairing for homology and cohomology of tropical cycles on integral affine manifolds with singularities. We show the pairing is perfect over  in degree 1 when the manifold has at worst symple singularities. By joint work with Siebert, the pairing computes period integrals and its perfectness implies the versality of canonical Calabi–Yau degenerations. We also give an intersection-theoretic application for Strominger–Yau–Zaslow fibrations. The treatment of the cap product and Poincaré–Lefschetz by simplicial methods for constructible sheaves might be of independent interest.

DOI : 10.2140/gt.2021.25.3079
Classification : 14J32, 05E45, 14D06, 14T05, 32S60, 55U10
Keywords: tropical homology, torus fibration, SYZ, integrable system, toric degeneration, mirror symmetry, versality, affine structure, Picard-Lefschetz

Ruddat, Helge 1

1 Mathematisches Institut, Johannes Gutenberg-Universität Mainz, Mainz, Germany, Universität Hamburg, Hamburg, Germany
@article{GT_2021_25_6_a6,
     author = {Ruddat, Helge},
     title = {A homology theory for tropical cycles on integral affine manifolds and a perfect pairing},
     journal = {Geometry & topology},
     pages = {3079--3132},
     publisher = {mathdoc},
     volume = {25},
     number = {6},
     year = {2021},
     doi = {10.2140/gt.2021.25.3079},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.3079/}
}
TY  - JOUR
AU  - Ruddat, Helge
TI  - A homology theory for tropical cycles on integral affine manifolds and a perfect pairing
JO  - Geometry & topology
PY  - 2021
SP  - 3079
EP  - 3132
VL  - 25
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.3079/
DO  - 10.2140/gt.2021.25.3079
ID  - GT_2021_25_6_a6
ER  - 
%0 Journal Article
%A Ruddat, Helge
%T A homology theory for tropical cycles on integral affine manifolds and a perfect pairing
%J Geometry & topology
%D 2021
%P 3079-3132
%V 25
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.3079/
%R 10.2140/gt.2021.25.3079
%F GT_2021_25_6_a6
Ruddat, Helge. A homology theory for tropical cycles on integral affine manifolds and a perfect pairing. Geometry & topology, Tome 25 (2021) no. 6, pp. 3079-3132. doi : 10.2140/gt.2021.25.3079. http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.3079/

[1] L Allermann, J Rau, First steps in tropical intersection theory, Math. Z. 264 (2010) 633 | DOI

[2] O Amini, M Piquerez, Hodge theory for tropical varieties, preprint (2020)

[3] V I Arnold, Mathematical methods of classical mechanics, 60, Springer (1978) | DOI

[4] G E Bredon, Topology and geometry, 139, Springer (1993) | DOI

[5] G E Bredon, Sheaf theory, 170, Springer (1997) | DOI

[6] R Castaño-Bernard, D Matessi, Lagrangian 3–torus fibrations, J. Differential Geom. 81 (2009) 483 | DOI

[7] R Castaño-Bernard, D Matessi, Conifold transitions via affine geometry and mirror symmetry, Geom. Topol. 18 (2014) 1769 | DOI

[8] J M Curry, Sheaves, cosheaves and applications, PhD thesis, University of Pennsylvania (2013)

[9] V I Danilov, The geometry of toric varieties, Uspekhi Mat. Nauk 33 (1978) 85

[10] J F Davis, P Kirk, Lecture notes in algebraic topology, 35, Amer. Math. Soc. (2001) | DOI

[11] J J Duistermaat, On global action-angle coordinates, Comm. Pure Appl. Math. 33 (1980) 687 | DOI

[12] S Felten, M Filip, H Ruddat, Smoothing toroidal crossing spaces, Forum Math. Pi 9 (2021) | DOI

[13] W Goldman, M W Hirsch, The radiance obstruction and parallel forms on affine manifolds, Trans. Amer. Math. Soc. 286 (1984) 629 | DOI

[14] A Gross, F Shokrieh, A sheaf-theoretic approach to tropical homology, preprint (2019)

[15] M Gross, Special Lagrangian fibrations, I : Topology, from: "Integrable systems and algebraic geometry" (editors M H Saito, Y Shimizu, K Ueno), World Sci. (1998) 156

[16] M Gross, Topological mirror symmetry, Invent. Math. 144 (2001) 75 | DOI

[17] M Gross, Toric degenerations and Batyrev–Borisov duality, Math. Ann. 333 (2005) 645 | DOI

[18] M Gross, P Hacking, B Siebert, Theta functions on varieties with effective anti-canonical class, preprint (2016)

[19] M Gross, B Siebert, Mirror symmetry via logarithmic degeneration data, I, J. Differential Geom. 72 (2006) 169 | DOI

[20] M Gross, B Siebert, Mirror symmetry via logarithmic degeneration data, II, J. Algebraic Geom. 19 (2010) 679 | DOI

[21] M Gross, B Siebert, From real affine geometry to complex geometry, Ann. of Math. 174 (2011) 1301 | DOI

[22] A Hatcher, Algebraic topology, Cambridge Univ. Press (2002)

[23] I Itenberg, L Katzarkov, G Mikhalkin, I Zharkov, Tropical homology, Math. Ann. 374 (2019) 963 | DOI

[24] P Jell, J Rau, K Shaw, Lefschetz (1,1)–theorem in tropical geometry, Épijournal Géom. Algébrique 2 (2018)

[25] M Kontsevich, Y Soibelman, Affine structures and non-Archimedean analytic spaces, from: "The unity of mathematics" (editors P Etingof, V Retakh, I M Singer), Progr. Math. 244, Birkhäuser (2006) 321 | DOI

[26] N C Leung, M Symington, Almost toric symplectic four-manifolds, J. Symplectic Geom. 8 (2010) 143 | DOI

[27] C Y Mak, H Ruddat, Tropically constructed Lagrangians in mirror quintic threefolds, Forum Math. Sigma 8 (2020) | DOI

[28] D Matessi, H Ruddat, Deformations of tropical polarized K3 surfaces, in preparation

[29] G Mikhalkin, I Zharkov, Tropical eigenwave and intermediate Jacobians, from: "Homological mirror symmetry and tropical geometry" (editors R Castaño-Bernard, F Catanese, M Kontsevich, T Pantev, Y Soibelman, I Zharkov), Lect. Notes Unione Mat. Ital. 15, Springer (2014) 309 | DOI

[30] B Moishezon, Complex surfaces and connected sums of complex projective planes, 603, Springer (1977) | DOI

[31] J Nicaise, D P Overholser, H Ruddat, Motivic zeta functions of the quartic and its mirror dual, from: "String-math 2014" (editors V Bouchard, C Doran, S Méndez-Diez, C Quigley), Proc. Sympos. Pure Math. 93, Amer. Math. Soc. (2016) 189 | DOI

[32] T Prince, Lagrangian torus fibration models of Fano threefolds, preprint (2018)

[33] T Prince, Smoothing Calabi–Yau toric hypersurfaces using the Gross–Siebert algorithm, Compos. Math. 157 (2021) 1441 | DOI

[34] H Ruddat, Log Hodge groups on a toric Calabi–Yau degeneration, from: "Mirror symmetry and tropical geometry" (editors R Castaño-Bernard, Y Soibelman, I Zharkov), Contemp. Math. 527, Amer. Math. Soc. (2010) 113 | DOI

[35] H Ruddat, B Siebert, Conifold transitions via toric degenerations, in preparation

[36] H Ruddat, B Siebert, Period integrals from wall structures via tropical cycles, canonical coordinates in mirror symmetry and analyticity of toric degenerations, Publ. Math. Inst. Hautes Études Sci. 132 (2020) 1 | DOI

[37] H Ruddat, I Zharkov, Topological Strominger–Yau–Zaslow fibrations, in preparation

[38] H Ruddat, I Zharkov, Compactifying torus fibrations over integral affine manifolds with singularities, from: "2019–20 MATRIX annals" (editors D R Wood, J de Gier, C E Praeger, T Tao), MATRIX Book Ser. 4, Springer (2021) 609 | DOI

[39] M Symington, Four dimensions from two in symplectic topology, from: "Topology and geometry of manifolds" (editors G Matić, C McCrory), Proc. Sympos. Pure Math. 71, Amer. Math. Soc. (2003) 153 | DOI

[40] C Thier, On the monodromy of 4–dimensional Lagrangian fibrations, PhD thesis, Albert–Ludwigs-Universität Freiburg (2008)

[41] J Williamson, On the algebraic problem concerning the normal forms of linear dynamical systems, Amer. J. Math. 58 (1936) 141 | DOI

[42] Y Yamamoto, Periods of tropical Calabi–Yau hypersurfaces, preprint (2018)

Cité par Sources :