Braid monodromy of univariate fewnomials
Geometry & topology, Tome 25 (2021) no. 6, pp. 3053-3077.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let 𝒞d d+1 be the space of nonsingular, univariate polynomials of degree d. The Viète map 𝒱 : 𝒞d Symd() sends a polynomial to its unordered set of roots. It is a classical fact that the induced map 𝒱 at the level of fundamental groups realises an isomorphism between π1(𝒞d) and the Artin braid group Bd. For fewnomials, or equivalently for the intersection 𝒞 of 𝒞d with a collection of coordinate hyperplanes in d+1, the image of the map 𝒱: π1(𝒞) Bd is not known in general.

We show that the map 𝒱 is surjective provided that the support of the corresponding polynomials spans as an affine lattice. If the support spans a strict sublattice of index b, we show that the image of 𝒱 is the expected wreath product of b with Bdb. From these results, we derive an application to the computation of the braid monodromy for collections of univariate polynomials depending on a common set of parameters.

DOI : 10.2140/gt.2021.25.3053
Classification : 20F36, 55R80, 14T05
Keywords: braid group, monodromy, fewnomial, tropical geometry

Esterov, Alexander 1 ; Lang, Lionel 2

1 Faculty of Mathematics, HSE University, Moscow, Russia
2 Department of Electrical Engineering, Mathematics and Science, University of Gävle, Gävle, Sweden
@article{GT_2021_25_6_a5,
     author = {Esterov, Alexander and Lang, Lionel},
     title = {Braid monodromy of univariate fewnomials},
     journal = {Geometry & topology},
     pages = {3053--3077},
     publisher = {mathdoc},
     volume = {25},
     number = {6},
     year = {2021},
     doi = {10.2140/gt.2021.25.3053},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.3053/}
}
TY  - JOUR
AU  - Esterov, Alexander
AU  - Lang, Lionel
TI  - Braid monodromy of univariate fewnomials
JO  - Geometry & topology
PY  - 2021
SP  - 3053
EP  - 3077
VL  - 25
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.3053/
DO  - 10.2140/gt.2021.25.3053
ID  - GT_2021_25_6_a5
ER  - 
%0 Journal Article
%A Esterov, Alexander
%A Lang, Lionel
%T Braid monodromy of univariate fewnomials
%J Geometry & topology
%D 2021
%P 3053-3077
%V 25
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.3053/
%R 10.2140/gt.2021.25.3053
%F GT_2021_25_6_a5
Esterov, Alexander; Lang, Lionel. Braid monodromy of univariate fewnomials. Geometry & topology, Tome 25 (2021) no. 6, pp. 3053-3077. doi : 10.2140/gt.2021.25.3053. http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.3053/

[1] V I Arnold, Certain topological invariants of algebraic functions, Trudy Moskov. Mat. Obšč. 21 (1970) 27

[2] E Artin, Theory of braids, Ann. of Math. 48 (1947) 101 | DOI

[3] D Bessis, Zariski theorems and diagrams for braid groups, Invent. Math. 145 (2001) 487 | DOI

[4] D Cheniot, Un théorème du type de Lefschetz, Ann. Inst. Fourier (Grenoble) 25 (1975) 195 | DOI

[5] S D Cohen, The Galois group of a polynomial with two indeterminate coefficients, Pacific J. Math. 90 (1980) 63 | DOI

[6] I Dolgachev, A Libgober, On the fundamental group of the complement to a discriminant variety, from: "Algebraic geometry" (editors A Libgober, P Wagreich), Lecture Notes in Math. 862, Springer (1981) 1 | DOI

[7] A Esterov, Galois theory for general systems of polynomial equations, Compos. Math. 155 (2019) 229 | DOI

[8] A Esterov, L Lang, Sparse polynomial equations and other enumerative problems whose Galois groups are wreath products, preprint (2018)

[9] E Fadell, L Neuwirth, Configuration spaces, Math. Scand. 10 (1962) 111 | DOI

[10] B Farb, D Margalit, A primer on mapping class groups, 49, Princeton Univ. Press (2012)

[11] I M Gelfand, M M Kapranov, A V Zelevinsky, Discriminants, resultants, and multidimensional determinants, Birkhäuser (1994) | DOI

[12] R P Kent Iv, D Peifer, A geometric and algebraic description of annular braid groups, Int. J. Algebra Comput. 12 (2002) 85 | DOI

[13] L Lang, Monodromy of rational curves on toric surfaces, J. Topol. 13 (2020) 1658 | DOI

[14] A Libgober, On topological complexity of solving polynomial equations of special type, from: "Transactions of the Seventh Army Conference on Applied Mathematics and Computing", ARO Rep. 90, US Army Res. Office (1990) 475

Cité par Sources :