(ℝℙ2n−1,ξstd) is not exactly fillable for n≠2k
Geometry & topology, Tome 25 (2021) no. 6, pp. 3013-3052.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove that (2n1,ξstd) is not exactly fillable for any n2k and there exist strongly fillable but not exactly fillable contact manifolds for all dimensions 5.

DOI : 10.2140/gt.2021.25.3013
Classification : 53D05, 53D10, 53D42, 57R17, 14B05
Keywords: exact filling, symplectic cohomology, quotient singularity

Zhou, Zhengyi 1

1 Institute for Advanced Study, Princeton, NJ, United States, Morningside Center of Mathematics and Institute of Mathematics, AMSS, CAS, Beijing, China
@article{GT_2021_25_6_a4,
     author = {Zhou, Zhengyi},
     title = {(\ensuremath{\mathbb{R}}\ensuremath{\mathbb{P}}2n\ensuremath{-}1,\ensuremath{\xi}std) is not exactly fillable for n\ensuremath{\neq}2k},
     journal = {Geometry & topology},
     pages = {3013--3052},
     publisher = {mathdoc},
     volume = {25},
     number = {6},
     year = {2021},
     doi = {10.2140/gt.2021.25.3013},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.3013/}
}
TY  - JOUR
AU  - Zhou, Zhengyi
TI  - (ℝℙ2n−1,ξstd) is not exactly fillable for n≠2k
JO  - Geometry & topology
PY  - 2021
SP  - 3013
EP  - 3052
VL  - 25
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.3013/
DO  - 10.2140/gt.2021.25.3013
ID  - GT_2021_25_6_a4
ER  - 
%0 Journal Article
%A Zhou, Zhengyi
%T (ℝℙ2n−1,ξstd) is not exactly fillable for n≠2k
%J Geometry & topology
%D 2021
%P 3013-3052
%V 25
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.3013/
%R 10.2140/gt.2021.25.3013
%F GT_2021_25_6_a4
Zhou, Zhengyi. (ℝℙ2n−1,ξstd) is not exactly fillable for n≠2k. Geometry & topology, Tome 25 (2021) no. 6, pp. 3013-3052. doi : 10.2140/gt.2021.25.3013. http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.3013/

[1] M Abouzaid, P Seidel, An open string analogue of Viterbo functoriality, Geom. Topol. 14 (2010) 627 | DOI

[2] M S Borman, Y Eliashberg, E Murphy, Existence and classification of overtwisted contact structures in all dimensions, Acta Math. 215 (2015) 281 | DOI

[3] F Bourgeois, A Morse–Bott approach to contact homology, from: "Symplectic and contact topology: interactions and perspectives" (editors Y Eliashberg, B Khesin, F Lalonde), Fields Inst. Commun. 35, Amer. Math. Soc. (2003) 55

[4] F Bourgeois, Y Eliashberg, H Hofer, K Wysocki, E Zehnder, Compactness results in symplectic field theory, Geom. Topol. 7 (2003) 799 | DOI

[5] F Bourgeois, A Oancea, Symplectic homology, autonomous Hamiltonians, and Morse–Bott moduli spaces, Duke Math. J. 146 (2009) 71 | DOI

[6] J Bowden, Exactly fillable contact structures without Stein fillings, Algebr. Geom. Topol. 12 (2012) 1803 | DOI

[7] J Bowden, D Crowley, A I Stipsicz, The topology of Stein fillable manifolds in high dimensions, I, Proc. Lond. Math. Soc. 109 (2014) 1363 | DOI

[8] J Bowden, F Gironella, A Moreno, Bourgeois contact structures: tightness, fillability and applications, preprint (2019)

[9] K Cieliebak, A Floer, H Hofer, K Wysocki, Applications of symplectic homology, II : Stability of the action spectrum, Math. Z. 223 (1996) 27 | DOI

[10] K Cieliebak, A Oancea, Symplectic homology and the Eilenberg–Steenrod axioms, Algebr. Geom. Topol. 18 (2018) 1953 | DOI

[11] S Courte, Questions and open problems, (2012)

[12] L Diogo, S T Lisi, Symplectic homology of complements of smooth divisors, J. Topol. 12 (2019) 967 | DOI

[13] Y Eliashberg, Classification of overtwisted contact structures on 3–manifolds, Invent. Math. 98 (1989) 623 | DOI

[14] Y Eliashberg, Legendrian and transversal knots in tight contact 3–manifolds, from: "Topological methods in modern mathematics" (editors L R Goldberg, A V Phillips), Publish or Perish (1993) 171

[15] Y Eliashberg, Unique holomorphically fillable contact structure on the 3–torus, Internat. Math. Res. Notices (1996) 77 | DOI

[16] Y Eliashberg, S S Kim, L Polterovich, Geometry of contact transformations and domains: orderability versus squeezing, Geom. Topol. 10 (2006) 1635 | DOI

[17] J B Etnyre, K Honda, Tight contact structures with no symplectic fillings, Invent. Math. 148 (2002) 609 | DOI

[18] P Ghiggini, Strongly fillable contact 3–manifolds without Stein fillings, Geom. Topol. 9 (2005) 1677 | DOI

[19] K Irie, Hofer–Zehnder capacity of unit disk cotangent bundles and the loop product, J. Eur. Math. Soc. 16 (2014) 2477 | DOI

[20] O Lazarev, Contact manifolds with flexible fillings, Geom. Funct. Anal. 30 (2020) 188 | DOI

[21] P Massot, K Niederkrüger, C Wendl, Weak and strong fillability of higher dimensional contact manifolds, Invent. Math. 192 (2013) 287 | DOI

[22] D Mcduff, D Salamon, J–holomorphic curves and symplectic topology, 52, Amer. Math. Soc. (2012)

[23] M Mclean, Reeb orbits and the minimal discrepancy of an isolated singularity, Invent. Math. 204 (2016) 505 | DOI

[24] J W Milnor, J D Stasheff, Characteristic classes, 76, Princeton Univ. Press (1974)

[25] A F Ritter, Floer theory for negative line bundles via Gromov–Witten invariants, Adv. Math. 262 (2014) 1035 | DOI

[26] P Seidel, A biased view of symplectic cohomology, from: "Current developments in mathematics, 2006" (editors B Mazur, T Mrowka, W Schmid, R Stanley, S T Yau), International (2008) 211

[27] Z Zhou, Quotient theorems in polyfold theory and S1–equivariant transversality, Proc. Lond. Math. Soc. 121 (2020) 1337 | DOI

[28] Z Zhou, Symplectic fillings of asymptotically dynamically convex manifolds, I, J. Topol. 14 (2021) 112 | DOI

Cité par Sources :