Marked points on translation surfaces
Geometry & topology, Tome 25 (2021) no. 6, pp. 2913-2961.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We show that all GL+(2, ) equivariant point markings over orbit closures of translation surfaces arise from branched covering constructions and periodic points, completely classify such point markings over strata of quadratic differentials, and give applications to the finite blocking problem.

DOI : 10.2140/gt.2021.25.2913
Classification : 32G15, 37F30
Keywords: translation surfaces, abelian differentials, Teichmüller dynamics

Apisa, Paul 1 ; Wright, Alex 2

1 Department of Mathematics, Yale University, New Haven, CT, United States
2 Department of Mathematics, University of Michigan, Ann Arbor, MI, United States
@article{GT_2021_25_6_a2,
     author = {Apisa, Paul and Wright, Alex},
     title = {Marked points on translation surfaces},
     journal = {Geometry & topology},
     pages = {2913--2961},
     publisher = {mathdoc},
     volume = {25},
     number = {6},
     year = {2021},
     doi = {10.2140/gt.2021.25.2913},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.2913/}
}
TY  - JOUR
AU  - Apisa, Paul
AU  - Wright, Alex
TI  - Marked points on translation surfaces
JO  - Geometry & topology
PY  - 2021
SP  - 2913
EP  - 2961
VL  - 25
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.2913/
DO  - 10.2140/gt.2021.25.2913
ID  - GT_2021_25_6_a2
ER  - 
%0 Journal Article
%A Apisa, Paul
%A Wright, Alex
%T Marked points on translation surfaces
%J Geometry & topology
%D 2021
%P 2913-2961
%V 25
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.2913/
%R 10.2140/gt.2021.25.2913
%F GT_2021_25_6_a2
Apisa, Paul; Wright, Alex. Marked points on translation surfaces. Geometry & topology, Tome 25 (2021) no. 6, pp. 2913-2961. doi : 10.2140/gt.2021.25.2913. http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.2913/

[1] P Apisa, GL2R–invariant measures in marked strata : generic marked points, Earle–Kra for strata and illumination, Geom. Topol. 24 (2020) 373 | DOI

[2] P Apisa, A Wright, Generalizations of the Eierlegende-Wollmilchsau, preprint (2020)

[3] A Avila, A Eskin, M Möller, Symplectic and isometric SL(2, R)–invariant subbundles of the Hodge bundle, J. Reine Angew. Math. 732 (2017) 1 | DOI

[4] D Chen, M Möller, Quadratic differentials in low genus: exceptional and non-varying strata, Ann. Sci. Éc. Norm. Supér. 47 (2014) 309 | DOI

[5] R F Coleman, Torsion points on abelian étale coverings of P1 −{0,1,∞}, Trans. Amer. Math. Soc. 311 (1989) 185 | DOI

[6] R F Coleman, A Tamagawa, P Tzermias, The cuspidal torsion packet on the Fermat curve, J. Reine Angew. Math. 496 (1998) 73 | DOI

[7] A Eskin, S Filip, A Wright, The algebraic hull of the Kontsevich–Zorich cocycle, Ann. of Math. 188 (2018) 281 | DOI

[8] A Eskin, C T Mcmullen, R E Mukamel, A Wright, Billiards, quadrilaterals and moduli spaces, J. Amer. Math. Soc. 33 (2020) 1039 | DOI

[9] A Eskin, M Mirzakhani, Invariant and stationary measures for the SL(2, R) action on moduli space, Publ. Math. Inst. Hautes Études Sci. 127 (2018) 95 | DOI

[10] A Eskin, M Mirzakhani, A Mohammadi, Isolation, equidistribution, and orbit closures for the SL(2, R) action on moduli space, Ann. of Math. 182 (2015) 673 | DOI

[11] S Filip, Semisimplicity and rigidity of the Kontsevich–Zorich cocycle, Invent. Math. 205 (2016) 617 | DOI

[12] S Filip, Splitting mixed Hodge structures over affine invariant manifolds, Ann. of Math. 183 (2016) 681 | DOI

[13] D Grant, D Shaulis, The cuspidal torsion packet on hyperelliptic Fermat quotients, J. Théor. Nombres Bordeaux 16 (2004) 577 | DOI

[14] E Gutkin, P Hubert, T A Schmidt, Affine diffeomorphisms of translation surfaces : periodic points, Fuchsian groups, and arithmeticity, Ann. Sci. École Norm. Sup. 36 (2003) 847 | DOI

[15] P Hubert, M Schmoll, S Troubetzkoy, Modular fibers and illumination problems, Int. Math. Res. Not. 2008 (2008) | DOI

[16] M Kontsevich, A Zorich, Connected components of the moduli spaces of Abelian differentials with prescribed singularities, Invent. Math. 153 (2003) 631 | DOI

[17] A Kumar, R E Mukamel, Real multiplication through explicit correspondences, LMS J. Comput. Math. 19 (2016) 29 | DOI

[18] E Lanneau, Hyperelliptic components of the moduli spaces of quadratic differentials with prescribed singularities, Comment. Math. Helv. 79 (2004) 471 | DOI

[19] E Lanneau, Connected components of the strata of the moduli spaces of quadratic differentials, Ann. Sci. Éc. Norm. Supér. 41 (2008) 1 | DOI

[20] E Lanneau, D M Nguyen, A Wright, Finiteness of Teichmüller curves in non-arithmetic rank 1 orbit closures, Amer. J. Math. 139 (2017) 1449 | DOI

[21] S Lelièvre, T Monteil, B Weiss, Everything is illuminated, Geom. Topol. 20 (2016) 1737 | DOI

[22] H Masur, A Zorich, Multiple saddle connections on flat surfaces and the principal boundary of the moduli spaces of quadratic differentials, Geom. Funct. Anal. 18 (2008) 919 | DOI

[23] C T Mcmullen, Teichmüller curves in genus two : discriminant and spin, Math. Ann. 333 (2005) 87 | DOI

[24] C T Mcmullen, Teichmüller curves in genus two : torsion divisors and ratios of sines, Invent. Math. 165 (2006) 651 | DOI

[25] C T Mcmullen, R E Mukamel, A Wright, Cubic curves and totally geodesic subvarieties of moduli space, Ann. of Math. 185 (2017) 957 | DOI

[26] M Mirzakhani, A Wright, The boundary of an affine invariant submanifold, Invent. Math. 209 (2017) 927 | DOI

[27] M Mirzakhani, A Wright, Full-rank affine invariant submanifolds, Duke Math. J. 167 (2018) 1 | DOI

[28] M Möller, Periodic points on Veech surfaces and the Mordell–Weil group over a Teichmüller curve, Invent. Math. 165 (2006) 633 | DOI

[29] M Möller, Affine groups of flat surfaces, from: "Handbook of Teichmüller theory, II" (editor A Papadopoulos), IRMA Lect. Math. Theor. Phys. 13, Eur. Math. Soc. (2009) 369 | DOI

[30] T Monteil, On the finite blocking property, Ann. Inst. Fourier (Grenoble) 55 (2005) 1195 | DOI

[31] T Monteil, Finite blocking property versus pure periodicity, Ergodic Theory Dynam. Systems 29 (2009) 983 | DOI

[32] J Smillie, B Weiss, Minimal sets for flows on moduli space, Israel J. Math. 142 (2004) 249 | DOI

[33] P Tzermias, Almost rational torsion points and the cuspidal torsion packet on Fermat quotient curves, Math. Res. Lett. 14 (2007) 99 | DOI

[34] A Wolecki, Illumination in rational billiards, preprint (2019)

[35] A Wright, The field of definition of affine invariant submanifolds of the moduli space of abelian differentials, Geom. Topol. 18 (2014) 1323 | DOI

[36] A Wright, Cylinder deformations in orbit closures of translation surfaces, Geom. Topol. 19 (2015) 413 | DOI

Cité par Sources :