More concordance homomorphisms from knot Floer homology
Geometry & topology, Tome 25 (2021) no. 1, pp. 275-338.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We define an infinite family of linearly independent, integer-valued smooth concordance homomorphisms. Our homomorphisms are explicitly computable and rely on local equivalence classes of knot Floer complexes over the ring 𝔽[U,V ](UV = 0). We compare our invariants to other concordance homomorphisms coming from knot Floer homology, and discuss applications to topologically slice knots, concordance genus and concordance unknotting number.

DOI : 10.2140/gt.2021.25.275
Classification : 57M25, 57N70, 57R58
Keywords: concordance, knots, knot Floer homology

Dai, Irving 1 ; Hom, Jennifer 2 ; Stoffregen, Matthew 3 ; Truong, Linh 4

1 Department of Mathematics, Princeton University, Princeton, NJ, United States, Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, United States
2 School of Mathematics, Georgia Institute of Technology, Atlanta, GA, United States
3 Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, United States
4 Department of Mathematics, Columbia University, New York, NY, United States, School of Mathematics, Institute for Advanced Study, Princeton, NJ, United States
@article{GT_2021_25_1_a4,
     author = {Dai, Irving and Hom, Jennifer and Stoffregen, Matthew and Truong, Linh},
     title = {More concordance homomorphisms from knot {Floer} homology},
     journal = {Geometry & topology},
     pages = {275--338},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2021},
     doi = {10.2140/gt.2021.25.275},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.275/}
}
TY  - JOUR
AU  - Dai, Irving
AU  - Hom, Jennifer
AU  - Stoffregen, Matthew
AU  - Truong, Linh
TI  - More concordance homomorphisms from knot Floer homology
JO  - Geometry & topology
PY  - 2021
SP  - 275
EP  - 338
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.275/
DO  - 10.2140/gt.2021.25.275
ID  - GT_2021_25_1_a4
ER  - 
%0 Journal Article
%A Dai, Irving
%A Hom, Jennifer
%A Stoffregen, Matthew
%A Truong, Linh
%T More concordance homomorphisms from knot Floer homology
%J Geometry & topology
%D 2021
%P 275-338
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.275/
%R 10.2140/gt.2021.25.275
%F GT_2021_25_1_a4
Dai, Irving; Hom, Jennifer; Stoffregen, Matthew; Truong, Linh. More concordance homomorphisms from knot Floer homology. Geometry & topology, Tome 25 (2021) no. 1, pp. 275-338. doi : 10.2140/gt.2021.25.275. http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.275/

[1] A Alishahi, E Eftekhary, Knot Floer homology and the unknotting number, Geom. Topol. 24 (2020) 2435 | DOI

[2] I Dai, J Hom, M Stoffregen, L Truong, An infinite-rank summand of the homology cobordism group, preprint (2018)

[3] J Hanselman, L Watson, A calculus for bordered Floer homology, preprint (2015)

[4] M Hedden, On knot Floer homology and cabling, II, Int. Math. Res. Not. 2009 (2009) 2248 | DOI

[5] M Hedden, C Livingston, D Ruberman, Topologically slice knots with nontrivial Alexander polynomial, Adv. Math. 231 (2012) 913 | DOI

[6] M Hedden, L Watson, On the geography and botany of knot Floer homology, Selecta Math. 24 (2018) 997 | DOI

[7] J Hom, A note on cabling and L–space surgeries, Algebr. Geom. Topol. 11 (2011) 219 | DOI

[8] J Hom, The knot Floer complex and the smooth concordance group, Comment. Math. Helv. 89 (2014) 537 | DOI

[9] J Hom, An infinite-rank summand of topologically slice knots, Geom. Topol. 19 (2015) 1063 | DOI

[10] J Hom, On the concordance genus of topologically slice knots, Int. Math. Res. Not. 2015 (2015) 1295 | DOI

[11] J Hom, A note on the concordance invariants epsilon and upsilon, Proc. Amer. Math. Soc. 144 (2016) 897 | DOI

[12] J Hom, A survey on Heegaard Floer homology and concordance, J. Knot Theory Ramifications 26 (2017) | DOI

[13] M H Kim, K Park, An infinite-rank summand of knots with trivial Alexander polynomial, J. Symplectic Geom. 16 (2018) 1749 | DOI

[14] D Krcatovich, A restriction on the Alexander polynomials of L–space knots, Pacific J. Math. 297 (2018) 117 | DOI

[15] R Lipshitz, P Ozsváth, D Thurston, Bordered Heegaard Floer homology: invariance and pairing, preprint (2008)

[16] C Manolescu, An introduction to knot Floer homology, from: "Physics and mathematics of link homology" (editors M Khovanov, J Walcher), Contemp. Math. 680, Amer. Math. Soc. (2016) 99 | DOI

[17] B Owens, S Strle, Immersed disks, slicing numbers and concordance unknotting numbers, Comm. Anal. Geom. 24 (2016) 1107 | DOI

[18] P S Ozsváth, A I Stipsicz, Z Szabó, Concordance homomorphisms from knot Floer homology, Adv. Math. 315 (2017) 366 | DOI

[19] P Ozsváth, Z Szabó, Knot Floer homology and the four-ball genus, Geom. Topol. 7 (2003) 615 | DOI

[20] P Ozsváth, Z Szabó, Holomorphic disks and genus bounds, Geom. Topol. 8 (2004) 311 | DOI

[21] P Ozsváth, Z Szabó, Holomorphic disks and knot invariants, Adv. Math. 186 (2004) 58 | DOI

[22] P Ozsváth, Z Szabó, On knot Floer homology and lens space surgeries, Topology 44 (2005) 1281 | DOI

[23] P S Ozsváth, Z Szabó, Knot Floer homology and integer surgeries, Algebr. Geom. Topol. 8 (2008) 101 | DOI

[24] P Ozsváth, Z Szabó, Bordered knot algebras with matchings, Quantum Topol. 10 (2019) 481 | DOI

[25] I Petkova, Cables of thin knots and bordered Heegaard Floer homology, Quantum Topol. 4 (2013) 377 | DOI

[26] J A Rasmussen, Floer homology and knot complements, PhD thesis, Harvard University (2003)

[27] I Zemke, Connected sums and involutive knot Floer homology, Proc. Lond. Math. Soc. 119 (2019) 214 | DOI

[28] I Zemke, Link cobordisms and absolute gradings on link Floer homology, Quantum Topol. 10 (2019) 207 | DOI

Cité par Sources :