Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We define an infinite family of linearly independent, integer-valued smooth concordance homomorphisms. Our homomorphisms are explicitly computable and rely on local equivalence classes of knot Floer complexes over the ring . We compare our invariants to other concordance homomorphisms coming from knot Floer homology, and discuss applications to topologically slice knots, concordance genus and concordance unknotting number.
Dai, Irving 1 ; Hom, Jennifer 2 ; Stoffregen, Matthew 3 ; Truong, Linh 4
@article{GT_2021_25_1_a4, author = {Dai, Irving and Hom, Jennifer and Stoffregen, Matthew and Truong, Linh}, title = {More concordance homomorphisms from knot {Floer} homology}, journal = {Geometry & topology}, pages = {275--338}, publisher = {mathdoc}, volume = {25}, number = {1}, year = {2021}, doi = {10.2140/gt.2021.25.275}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.275/} }
TY - JOUR AU - Dai, Irving AU - Hom, Jennifer AU - Stoffregen, Matthew AU - Truong, Linh TI - More concordance homomorphisms from knot Floer homology JO - Geometry & topology PY - 2021 SP - 275 EP - 338 VL - 25 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.275/ DO - 10.2140/gt.2021.25.275 ID - GT_2021_25_1_a4 ER -
%0 Journal Article %A Dai, Irving %A Hom, Jennifer %A Stoffregen, Matthew %A Truong, Linh %T More concordance homomorphisms from knot Floer homology %J Geometry & topology %D 2021 %P 275-338 %V 25 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.275/ %R 10.2140/gt.2021.25.275 %F GT_2021_25_1_a4
Dai, Irving; Hom, Jennifer; Stoffregen, Matthew; Truong, Linh. More concordance homomorphisms from knot Floer homology. Geometry & topology, Tome 25 (2021) no. 1, pp. 275-338. doi : 10.2140/gt.2021.25.275. http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.275/
[1] Knot Floer homology and the unknotting number, Geom. Topol. 24 (2020) 2435 | DOI
, ,[2] An infinite-rank summand of the homology cobordism group, preprint (2018)
, , , ,[3] A calculus for bordered Floer homology, preprint (2015)
, ,[4] On knot Floer homology and cabling, II, Int. Math. Res. Not. 2009 (2009) 2248 | DOI
,[5] Topologically slice knots with nontrivial Alexander polynomial, Adv. Math. 231 (2012) 913 | DOI
, , ,[6] On the geography and botany of knot Floer homology, Selecta Math. 24 (2018) 997 | DOI
, ,[7] A note on cabling and L–space surgeries, Algebr. Geom. Topol. 11 (2011) 219 | DOI
,[8] The knot Floer complex and the smooth concordance group, Comment. Math. Helv. 89 (2014) 537 | DOI
,[9] An infinite-rank summand of topologically slice knots, Geom. Topol. 19 (2015) 1063 | DOI
,[10] On the concordance genus of topologically slice knots, Int. Math. Res. Not. 2015 (2015) 1295 | DOI
,[11] A note on the concordance invariants epsilon and upsilon, Proc. Amer. Math. Soc. 144 (2016) 897 | DOI
,[12] A survey on Heegaard Floer homology and concordance, J. Knot Theory Ramifications 26 (2017) | DOI
,[13] An infinite-rank summand of knots with trivial Alexander polynomial, J. Symplectic Geom. 16 (2018) 1749 | DOI
, ,[14] A restriction on the Alexander polynomials of L–space knots, Pacific J. Math. 297 (2018) 117 | DOI
,[15] Bordered Heegaard Floer homology: invariance and pairing, preprint (2008)
, , ,[16] An introduction to knot Floer homology, from: "Physics and mathematics of link homology" (editors M Khovanov, J Walcher), Contemp. Math. 680, Amer. Math. Soc. (2016) 99 | DOI
,[17] Immersed disks, slicing numbers and concordance unknotting numbers, Comm. Anal. Geom. 24 (2016) 1107 | DOI
, ,[18] Concordance homomorphisms from knot Floer homology, Adv. Math. 315 (2017) 366 | DOI
, , ,[19] Knot Floer homology and the four-ball genus, Geom. Topol. 7 (2003) 615 | DOI
, ,[20] Holomorphic disks and genus bounds, Geom. Topol. 8 (2004) 311 | DOI
, ,[21] Holomorphic disks and knot invariants, Adv. Math. 186 (2004) 58 | DOI
, ,[22] On knot Floer homology and lens space surgeries, Topology 44 (2005) 1281 | DOI
, ,[23] Knot Floer homology and integer surgeries, Algebr. Geom. Topol. 8 (2008) 101 | DOI
, ,[24] Bordered knot algebras with matchings, Quantum Topol. 10 (2019) 481 | DOI
, ,[25] Cables of thin knots and bordered Heegaard Floer homology, Quantum Topol. 4 (2013) 377 | DOI
,[26] Floer homology and knot complements, PhD thesis, Harvard University (2003)
,[27] Connected sums and involutive knot Floer homology, Proc. Lond. Math. Soc. 119 (2019) 214 | DOI
,[28] Link cobordisms and absolute gradings on link Floer homology, Quantum Topol. 10 (2019) 207 | DOI
,Cité par Sources :