Barcodes and area-preserving homeomorphisms
Geometry & topology, Tome 25 (2021) no. 6, pp. 2713-2825.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We use the theory of barcodes as a new tool for studying dynamics of area-preserving homeomorphisms. We will show that the barcode of a Hamiltonian diffeomorphism of a surface depends continuously on the diffeomorphism, and furthermore define barcodes for Hamiltonian homeomorphisms.

Our main dynamical application concerns the notion of weak conjugacy, an equivalence relation which arises naturally in connection to C0 continuous conjugacy invariants of Hamiltonian homeomorphisms. We show that for a large class of Hamiltonian homeomorphisms with a finite number of fixed points, the number of fixed points, counted with multiplicity, is a weak conjugacy invariant. The proof relies, in addition to the theory of barcodes, on techniques from surface dynamics such as Le Calvez’s theory of transverse foliations.

In our exposition of barcodes and persistence modules, we present a proof of the isometry theorem which incorporates Barannikov’s theory of simple Morse complexes.

DOI : 10.2140/gt.2021.25.2713
Classification : 37E30, 53D05, 53D40
Keywords: barcode, area-preserving homeomorphisms, symplectic topology, topological dynamics

Le Roux, Frédéric 1 ; Seyfaddini, Sobhan 2 ; Viterbo, Claude 3

1 Institut de Mathématiques de Jussieu – Paris Rive Gauche, UMR7586, Sorbonne Université, Paris, France
2 CNRS, Institut de Mathématiques de Jussieu – Paris Rive Gauche, UMR7586, Sorbonne Université, Paris, France
3 DMA, UMR8553 du CNRS, Ecole Normale Supérieure – PSL University, Paris, France
@article{GT_2021_25_6_a0,
     author = {Le Roux, Fr\'ed\'eric and Seyfaddini, Sobhan and Viterbo, Claude},
     title = {Barcodes and area-preserving homeomorphisms},
     journal = {Geometry & topology},
     pages = {2713--2825},
     publisher = {mathdoc},
     volume = {25},
     number = {6},
     year = {2021},
     doi = {10.2140/gt.2021.25.2713},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.2713/}
}
TY  - JOUR
AU  - Le Roux, Frédéric
AU  - Seyfaddini, Sobhan
AU  - Viterbo, Claude
TI  - Barcodes and area-preserving homeomorphisms
JO  - Geometry & topology
PY  - 2021
SP  - 2713
EP  - 2825
VL  - 25
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.2713/
DO  - 10.2140/gt.2021.25.2713
ID  - GT_2021_25_6_a0
ER  - 
%0 Journal Article
%A Le Roux, Frédéric
%A Seyfaddini, Sobhan
%A Viterbo, Claude
%T Barcodes and area-preserving homeomorphisms
%J Geometry & topology
%D 2021
%P 2713-2825
%V 25
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.2713/
%R 10.2140/gt.2021.25.2713
%F GT_2021_25_6_a0
Le Roux, Frédéric; Seyfaddini, Sobhan; Viterbo, Claude. Barcodes and area-preserving homeomorphisms. Geometry & topology, Tome 25 (2021) no. 6, pp. 2713-2825. doi : 10.2140/gt.2021.25.2713. http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.2713/

[1] S A Barannikov, The framed Morse complex and its invariants, from: "Singularities and bifurcations" (editor V I Arnold), Adv. Soviet Math. 21, Amer. Math. Soc. (1994) 93

[2] F Béguin, S Crovisier, F Le Roux, Pseudo-rotations of the open annulus, Bull. Braz. Math. Soc. 37 (2006) 275 | DOI

[3] M Bonino, A dynamical property for planar homeomorphisms and an application to the problem of canonical position around an isolated fixed point, Topology 40 (2001) 1241 | DOI

[4] L Buhovsky, V Humilière, S Seyfaddini, The action spectrum and C0 symplectic topology, Math. Ann. 380 (2021) 293 | DOI

[5] F Chazal, D Cohen-Steiner, M Glisse, L J Guibas, S Y Oudot, Proximity of persistence modules and their diagrams, from: "Proceedings of the Twenty-fifth Annual Symposium on Computational Geometry", ACM (2009) 237 | DOI

[6] F Chazal, V De Silva, M Glisse, S Oudot, The structure and stability of persistence modules, Springer (2016) | DOI

[7] K Cieliebak, A Floer, H Hofer, K Wysocki, Applications of symplectic homology, II : Stability of the action spectrum, Math. Z. 223 (1996) 27 | DOI

[8] D Cohen-Steiner, H Edelsbrunner, J Harer, Stability of persistence diagrams, Discrete Comput. Geom. 37 (2007) 103 | DOI

[9] J Conejeros, The local rotation set is an interval, Ergodic Theory Dynam. Systems 38 (2018) 2571 | DOI

[10] C Conley, Isolated invariant sets and the Morse index, 38, Amer. Math. Soc. (1978)

[11] M Entov, L Polterovich, P Py, On continuity of quasimorphisms for symplectic maps, from: "Perspectives in analysis, geometry, and topology" (editors I Itenberg, B Jöricke, M Passare), Progr. Math. 296, Springer (2012) 169 | DOI

[12] A Fathi, Structure of the group of homeomorphisms preserving a good measure on a compact manifold, Ann. Sci. École Norm. Sup. 13 (1980) 45 | DOI

[13] A Floer, Cuplength estimates on Lagrangian intersections, Comm. Pure Appl. Math. 42 (1989) 335 | DOI

[14] A Floer, Symplectic fixed points and holomorphic spheres, Comm. Math. Phys. 120 (1989) 575 | DOI

[15] A Floer, Witten’s complex and infinite-dimensional Morse theory, J. Differential Geom. 30 (1989) 207

[16] J M Gambaudo, É Ghys, Commutators and diffeomorphisms of surfaces, Ergodic Theory Dynam. Systems 24 (2004) 1591 | DOI

[17] V L Ginzburg, The Conley conjecture, Ann. of Math. 172 (2010) 1127 | DOI

[18] V L Ginzburg, B Z Gürel, Action and index spectra and periodic orbits in Hamiltonian dynamics, Geom. Topol. 13 (2009) 2745 | DOI

[19] V L Ginzburg, B Z Gürel, Local Floer homology and the action gap, J. Symplectic Geom. 8 (2010) 323 | DOI

[20] E Glasner, B Weiss, The topological Rohlin property and topological entropy, Amer. J. Math. 123 (2001) 1055 | DOI

[21] E Glasner, B Weiss, Topological groups with Rokhlin properties, Colloq. Math. 110 (2008) 51 | DOI

[22] L Guillou, On the structure of homeomorphisms of the open annulus, Ann. Fac. Sci. Toulouse Math. 20 (2011) 367 | DOI

[23] A Hatcher, Algebraic topology, Cambridge Univ. Press (2002)

[24] A Hatcher, The Kirby torus trick for surfaces, preprint (2013)

[25] N Hingston, Subharmonic solutions of Hamiltonian equations on tori, Ann. of Math. 170 (2009) 529 | DOI

[26] H Hofer, Lusternik–Schnirelman-theory for Lagrangian intersections, Ann. Inst. H. Poincaré Anal. Non Linéaire 5 (1988) 465 | DOI

[27] L Hörmander, Fourier integral operators, I, Acta Math. 127 (1971) 79 | DOI

[28] M Kashiwara, P Schapira, Sheaves on manifolds, 292, Springer (1990) | DOI

[29] M Kashiwara, P Schapira, Persistent homology and microlocal sheaf theory, J. Appl. Comput. Topol. 2 (2018) 83 | DOI

[30] A Katok, B Hasselblatt, Introduction to the modern theory of dynamical systems, 54, Cambridge Univ. Press (1995) | DOI

[31] A Kislev, E Shelukhin, Bounds on spectral norms and barcodes, preprint (2018)

[32] F Lalonde, D Mcduff, The geometry of symplectic energy, Ann. of Math. 141 (1995) 349 | DOI

[33] F Laudenbach, On an article by S A Barannikov, preprint (2015)

[34] F Laudenbach, J C Sikorav, Persistance d’intersection avec la section nulle au cours d’une isotopie hamiltonienne dans un fibré cotangent, Invent. Math. 82 (1985) 349 | DOI

[35] P Le Calvez, Une propriété dynamique des homéomorphismes du plan au voisinage d’un point fixe d’indice > 1, Topology 38 (1999) 23 | DOI

[36] P Le Calvez, Dynamique des homéomorphismes du plan au voisinage d’un point fixe, Ann. Sci. École Norm. Sup. 36 (2003) 139 | DOI

[37] P Le Calvez, Une version feuilletée équivariante du théorème de translation de Brouwer, Publ. Math. Inst. Hautes Études Sci. 102 (2005) 1 | DOI

[38] P Le Calvez, Pourquoi les points périodiques des homéomorphismes du plan tournent-ils autour de certains points fixes ?, Ann. Sci. Éc. Norm. Supér. 41 (2008) 141 | DOI

[39] P Le Calvez, J C Yoccoz, Un théorème d’indice pour les homéomorphismes du plan au voisinage d’un point fixe, Ann. of Math. 146 (1997) 241 | DOI

[40] D Le Peutrec, F Nier, C Viterbo, Precise Arrhenius law for p–forms : the Witten Laplacian and Morse–Barannikov complex, Ann. Henri Poincaré 14 (2013) 567 | DOI

[41] F Le Roux, Homéomorphismes de surfaces : théorèmes de la fleur de Leau–Fatou et de la variété stable, 292, Soc. Math. France (2004)

[42] F Le Roux, Simplicity of Homeo(D2,∂D2,Area) and fragmentation of symplectic diffeomorphisms, J. Symplectic Geom. 8 (2010) 73 | DOI

[43] F Le Roux, L’ensemble de rotation autour d’un point fixe, 350, Soc. Math. France (2013)

[44] K Mann, M Wolff, Rigidity of mapping class group actions on S1, Geom. Topol. 24 (2020) 1211 | DOI

[45] C K Mccord, On the Hopf index and the Conley index, Trans. Amer. Math. Soc. 313 (1989) 853 | DOI

[46] N A Nikišin, Fixed points of the diffeomorphisms of the two-sphere that preserve oriented area, Funkcional. Anal. i Priložen. 8 (1974) 90

[47] A Oancea, A survey of Floer homology for manifolds with contact type boundary or symplectic homology, from: "Symplectic geometry and Floer homology : a survey of the Floer homology for manifolds with contact type boundary or symplectic homology", Ensaios Mat. 7, Soc. Brasil. Mat. (2004) 51

[48] Y G Oh, Construction of spectral invariants of Hamiltonian paths on closed symplectic manifolds, from: "The breadth of symplectic and Poisson geometry" (editors J E Marsden, T S Ratiu), Progr. Math. 232, Birkhäuser (2005) 525 | DOI

[49] Y G Oh, S Müller, The group of Hamiltonian homeomorphisms and C0–symplectic topology, J. Symplectic Geom. 5 (2007) 167 | DOI

[50] Y Ostrover, A comparison of Hofer’s metrics on Hamiltonian diffeomorphisms and Lagrangian submanifolds, Commun. Contemp. Math. 5 (2003) 803 | DOI

[51] J C Oxtoby, S M Ulam, Measure-preserving homeomorphisms and metrical transitivity, Ann. of Math. 42 (1941) 874 | DOI

[52] A Patou, Arcs libres d’homéomorphismes en dimension 2, PhD thesis, Université Joseph Fourier, Grenoble (2006)

[53] S Pelikan, E E Slaminka, A bound for the fixed point index of area-preserving homeomorphisms of two-manifolds, Ergodic Theory Dynam. Systems 7 (1987) 463 | DOI

[54] L Polterovich, The geometry of the group of symplectic diffeomorphisms, Birkhäuser (2001) | DOI

[55] L Polterovich, D Rosen, K Samvelyan, J Zhang, Topological persistence in geometry and analysis, 74, Amer. Math. Soc. (2020)

[56] L Polterovich, E Shelukhin, Autonomous Hamiltonian flows, Hofer’s geometry and persistence modules, Selecta Math. 22 (2016) 227 | DOI

[57] L Polterovich, E Shelukhin, V Stojisavljević, Persistence modules with operators in Morse and Floer theory, Mosc. Math. J. 17 (2017) 757 | DOI

[58] P E Pushkar, Y V Chekanov, Combinatorics of fronts of Legendrian links, and Arnold’s 4–conjectures, Uspekhi Mat. Nauk 60 (2005) 99 | DOI

[59] B V Schmitt, L’espace des homéomorphismes du plan qui admettent un seul point fixe d’indice donné est connexe par arcs, Topology 18 (1979) 235 | DOI

[60] S Seyfaddini, C0–limits of Hamiltonian paths and the Oh–Schwarz spectral invariants, Int. Math. Res. Not. 2013 (2013) 4920 | DOI

[61] S Seyfaddini, Spectral killers and Poisson bracket invariants, J. Mod. Dyn. 9 (2015) 51 | DOI

[62] E Shelukhin, Viterbo conjecture for Zoll symmetric spaces, preprint (2018)

[63] J C Sikorav, Points fixes d’une application symplectique homologue à l’identité, J. Differential Geom. 22 (1985) 49

[64] C P Simon, A bound for the fixed-point index of an area-preserving map with applications to mechanics, Invent. Math. 26 (1974) 187 | DOI

[65] E E Slaminka, Removing index 0 fixed points for area preserving maps of two-manifolds, Trans. Amer. Math. Soc. 340 (1993) 429 | DOI

[66] M Usher, The sharp energy-capacity inequality, Commun. Contemp. Math. 12 (2010) 457 | DOI

[67] M Usher, J Zhang, Persistent homology and Floer–Novikov theory, Geom. Topol. 20 (2016) 3333 | DOI

[68] C Viterbo, Symplectic topology as the geometry of generating functions, Math. Ann. 292 (1992) 685 | DOI

[69] C Viterbo, Functors and computations in Floer homology with applications, II, preprint (2018)

[70] A Zomorodian, G Carlsson, Computing persistent homology, Discrete Comput. Geom. 33 (2005) 249 | DOI

Cité par Sources :