Moduli theory, stability of fibrations and optimal symplectic connections
Geometry & topology, Tome 25 (2021) no. 5, pp. 2643-2697.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

K–polystability is, on the one hand, conjecturally equivalent to the existence of certain canonical Kähler metrics on polarised varieties, and, on the other hand, conjecturally gives the correct notion to form moduli. We introduce a notion of stability for families of K–polystable varieties, extending the classical notion of slope stability of a bundle, viewed as a family of K–polystable varieties via the associated projectivisation. We conjecture that this is the correct condition for forming moduli of fibrations.

Our main result relates this stability condition to Kähler geometry: we prove that the existence of an optimal symplectic connection implies semistability of the fibration. An optimal symplectic connection is a choice of fibrewise constant scalar curvature Kähler metric, satisfying a certain geometric partial differential equation. We conjecture that the existence of such a connection is equivalent to polystability of the fibration. We prove a finite-dimensional analogue of this conjecture, by describing a GIT problem for fibrations embedded in a fixed projective space, and showing that GIT polystability is equivalent to the existence of a zero of a certain moment map.

DOI : 10.2140/gt.2021.25.2643
Keywords: stability, Kähler geometry, fibrations, moduli

Dervan, Ruadhaí 1 ; Sektnan, Lars Martin 2

1 DPMMS, Centre for Mathematical Sciences, University of Cambridge, Cambridge, United Kingdom
2 Institut for Matematik, Aarhus University, Aarhus, Denmark
@article{GT_2021_25_5_a9,
     author = {Dervan, Ruadha{\'\i} and Sektnan, Lars Martin},
     title = {Moduli theory, stability of fibrations and optimal symplectic connections},
     journal = {Geometry & topology},
     pages = {2643--2697},
     publisher = {mathdoc},
     volume = {25},
     number = {5},
     year = {2021},
     doi = {10.2140/gt.2021.25.2643},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.2643/}
}
TY  - JOUR
AU  - Dervan, Ruadhaí
AU  - Sektnan, Lars Martin
TI  - Moduli theory, stability of fibrations and optimal symplectic connections
JO  - Geometry & topology
PY  - 2021
SP  - 2643
EP  - 2697
VL  - 25
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.2643/
DO  - 10.2140/gt.2021.25.2643
ID  - GT_2021_25_5_a9
ER  - 
%0 Journal Article
%A Dervan, Ruadhaí
%A Sektnan, Lars Martin
%T Moduli theory, stability of fibrations and optimal symplectic connections
%J Geometry & topology
%D 2021
%P 2643-2697
%V 25
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.2643/
%R 10.2140/gt.2021.25.2643
%F GT_2021_25_5_a9
Dervan, Ruadhaí; Sektnan, Lars Martin. Moduli theory, stability of fibrations and optimal symplectic connections. Geometry & topology, Tome 25 (2021) no. 5, pp. 2643-2697. doi : 10.2140/gt.2021.25.2643. http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.2643/

[1] R J Berman, K–polystability of Q–Fano varieties admitting Kähler–Einstein metrics, Invent. Math. 203 (2016) 973 | DOI

[2] B Berndtsson, Probability measures associated to geodesics in the space of Kähler metrics, from: "Algebraic and analytic microlocal analysis" (editors M Hitrik, D Tamarkin, B Tsygan, S Zelditch), Springer Proc. Math. Stat. 269, Springer (2018) 395 | DOI

[3] T Bouche, Convergence de la métrique de Fubini–Study d’un fibré linéaire positif, Ann. Inst. Fourier (Grenoble) 40 (1990) 117 | DOI

[4] S Boucksom, T Hisamoto, M Jonsson, Uniform K–stability, Duistermaat–Heckman measures and singularities of pairs, Ann. Inst. Fourier (Grenoble) 67 (2017) 743 | DOI

[5] G Codogni, Z Patakfalvi, Positivity of the CM line bundle for families of K-stable klt Fano varieties, Invent. Math. 223 (2021) 811 | DOI

[6] R Dervan, Uniform stability of twisted constant scalar curvature Kähler metrics, Int. Math. Res. Not. 2016 (2016) 4728 | DOI

[7] R Dervan, Relative K–stability for Kähler manifolds, Math. Ann. 372 (2018) 859 | DOI

[8] R Dervan, J Keller, A finite dimensional approach to Donaldson’s J–flow, Comm. Anal. Geom. 27 (2019) 1025 | DOI

[9] R Dervan, P Naumann, Moduli of polarised manifolds via canonical Kähler metrics, preprint (2018)

[10] R Dervan, J Ross, Stable maps in higher dimensions, Math. Ann. 374 (2019) 1033 | DOI

[11] R Dervan, L M Sektnan, Optimal symplectic connections on holomorphic submersions, Comm. Pure Appl. Math. (2020) | DOI

[12] S K Donaldson, Anti self-dual Yang–Mills connections over complex algebraic surfaces and stable vector bundles, Proc. Lond. Math. Soc. 50 (1985) 1 | DOI

[13] S K Donaldson, Scalar curvature and projective embeddings, I, J. Differential Geom. 59 (2001) 479 | DOI

[14] S K Donaldson, Scalar curvature and stability of toric varieties, J. Differential Geom. 62 (2002) 289 | DOI

[15] S K Donaldson, Lower bounds on the Calabi functional, J. Differential Geom. 70 (2005) 453 | DOI

[16] D Eisenbud, J Harris, 3264 and all that : a second course in algebraic geometry, Cambridge Univ. Press (2016) | DOI

[17] J Fine, Fibrations with constant scalar curvature Kähler metrics and the CM–line bundle, Math. Res. Lett. 14 (2007) 239 | DOI

[18] J Fine, J Ross, A note on positivity of the CM–line bundle, Int. Math. Res. Not. 2006 (2006) | DOI

[19] A Fujiki, The moduli spaces and Kähler metrics of polarized algebraic varieties, Sugaku 42 (1990) 231 | DOI

[20] A Fujiki, G Schumacher, The moduli space of extremal compact Kähler manifolds and generalized Weil–Petersson metrics, Publ. Res. Inst. Math. Sci. 26 (1990) 101 | DOI

[21] W Fulton, Intersection theory, 2, Springer (1984) | DOI

[22] R Hartshorne, Algebraic geometry, 52, Springer (1977) | DOI

[23] Y Hashimoto, Existence of twisted constant scalar curvature Kähler metrics with a large twist, Math. Z. 292 (2019) 791 | DOI

[24] S Kobayashi, Differential geometry of complex vector bundles, 15, Princeton Univ. Press (1987) | DOI

[25] J Kollár, Rational curves on algebraic varieties, 32, Springer (1996) | DOI

[26] M Lejmi, G Székelyhidi, The J–flow and stability, Adv. Math. 274 (2015) 404 | DOI

[27] C Li, X Wang, C Xu, Quasi-projectivity of the moduli space of smooth Kähler–Einstein Fano manifolds, Ann. Sci. École Norm. Sup. 51 (2018) 739 | DOI

[28] C Li, X Wang, C Xu, On the proper moduli spaces of smoothable Kähler–Einstein Fano varieties, Duke Math. J. 168 (2019) 1387 | DOI

[29] C Li, C Xu, Special test configuration and K–stability of Fano varieties, Ann. of Math. 180 (2014) 197 | DOI

[30] C Li, X Zhang, Q Zhao, A note on the generalization of the Kodaira embedding theorem, Sci. China Math. 64 (2021) 1563 | DOI

[31] H Luo, Geometric criterion for Gieseker–Mumford stability of polarized manifolds, J. Differential Geom. 49 (1998) 577 | DOI

[32] A Moriwaki, The continuity of Deligne’s pairing, Int. Math. Res. Not. 1999 (1999) 1057 | DOI

[33] D Mumford, Geometric invariant theory, 34, Springer (1965)

[34] Y Odaka, On the moduli of Kähler–Einstein Fano manifolds, preprint (2012)

[35] Y Odaka, A generalization of the Ross–Thomas slope theory, Osaka J. Math. 50 (2013) 171

[36] Y Odaka, Compact moduli spaces of Kähler–Einstein Fano varieties, Publ. Res. Inst. Math. Sci. 51 (2015) 549 | DOI

[37] J Ross, R Thomas, An obstruction to the existence of constant scalar curvature Kähler metrics, J. Differential Geom. 72 (2006) 429 | DOI

[38] J Ross, R Thomas, A study of the Hilbert–Mumford criterion for the stability of projective varieties, J. Algebraic Geom. 16 (2007) 201 | DOI

[39] J Ross, R Thomas, Weighted projective embeddings, stability of orbifolds, and constant scalar curvature Kähler metrics, J. Differential Geom. 88 (2011) 109 | DOI

[40] C T Simpson, Moduli of representations of the fundamental group of a smooth projective variety, I, Inst. Hautes Études Sci. Publ. Math. 79 (1994) 47 | DOI

[41] J Stoppa, E Tenni, A simple limit for slope instability, Int. Math. Res. Not. 2010 (2010) 1816 | DOI

[42] G Székelyhidi, An introduction to extremal Kähler metrics, 152, Amer. Math. Soc. (2014) | DOI

[43] G Székelyhidi, Filtrations and test-configurations, Math. Ann. 362 (2015) 451 | DOI

[44] R P Thomas, Notes on GIT and symplectic reduction for bundles and varieties, from: "Surveys in differential geometry, X" (editor S T Yau), International (2006) 221 | DOI

[45] G Tian, On a set of polarized Kähler metrics on algebraic manifolds, J. Differential Geom. 32 (1990) 99 | DOI

[46] G Tian, Kähler–Einstein metrics with positive scalar curvature, Invent. Math. 130 (1997) 1 | DOI

[47] K Uhlenbeck, S T Yau, On the existence of Hermitian–Yang–Mills connections in stable vector bundles, Comm. Pure Appl. Math. 39 (1986) | DOI

[48] X Wang, Balance point and stability of vector bundles over a projective manifold, Math. Res. Lett. 9 (2002) 393 | DOI

[49] X Wang, Moment map, Futaki invariant and stability of projective manifolds, Comm. Anal. Geom. 12 (2004) 1009 | DOI

[50] X Wang, Canonical metrics on stable vector bundles, Comm. Anal. Geom. 13 (2005) 253 | DOI

[51] X Wang, Height and GIT weight, Math. Res. Lett. 19 (2012) 909 | DOI

[52] X Wang, C Xu, Nonexistence of asymptotic GIT compactification, Duke Math. J. 163 (2014) 2217 | DOI

[53] D Witt Nyström, Test configurations and Okounkov bodies, Compos. Math. 148 (2012) 1736 | DOI

[54] S T Yau, Open problems in geometry, from: "Differential geometry: partial differential equations on manifolds" (editor R Greene), Proc. Sympos. Pure Math. 54, Amer. Math. Soc. (1993) 1 | DOI

[55] Y Zeng, Deformations from a given Kähler metric to a twisted cscK metric, Asian J. Math. 23 (2019) 985

[56] S Zhang, Heights and reductions of semi-stable varieties, Compos. Math. 104 (1996) 77

Cité par Sources :