On the isometric conjecture of Banach
Geometry & topology, Tome 25 (2021) no. 5, pp. 2621-2642.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let V be a Banach space all of whose subspaces of a fixed dimension n are isometric, with 1 < n < dim(V ). In 1932, S Banach asked if under this hypothesis V is necessarily a Hilbert space. In 1967, M Gromov answered it positively for even n. We give a positive answer for real V and odd n of the form n = 4k + 1, with the possible exception of n = 133. Our proof relies on a new characterization of ellipsoids in n for n 5, as the only symmetric convex bodies all of whose linear hyperplane sections are linearly equivalent affine bodies of revolution.

DOI : 10.2140/gt.2021.25.2621
Classification : 52A21, 46B04
Keywords: convex body of revolution, structure group reduction

Bor, Gil 1 ; Hernández Lamoneda, Luis 1 ; Jiménez-Desantiago, Valentín 2 ; Montejano, Luis 2

1 Centro de Investigación en Matemáticas, Guanajuato, Mexico
2 Instituto de Matemáticas, Universidad Nacional Autónoma de México, Juriquilla, Mexico
@article{GT_2021_25_5_a8,
     author = {Bor, Gil and Hern\'andez Lamoneda, Luis and Jim\'enez-Desantiago, Valent{\'\i}n and Montejano, Luis},
     title = {On the isometric conjecture of {Banach}},
     journal = {Geometry & topology},
     pages = {2621--2642},
     publisher = {mathdoc},
     volume = {25},
     number = {5},
     year = {2021},
     doi = {10.2140/gt.2021.25.2621},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.2621/}
}
TY  - JOUR
AU  - Bor, Gil
AU  - Hernández Lamoneda, Luis
AU  - Jiménez-Desantiago, Valentín
AU  - Montejano, Luis
TI  - On the isometric conjecture of Banach
JO  - Geometry & topology
PY  - 2021
SP  - 2621
EP  - 2642
VL  - 25
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.2621/
DO  - 10.2140/gt.2021.25.2621
ID  - GT_2021_25_5_a8
ER  - 
%0 Journal Article
%A Bor, Gil
%A Hernández Lamoneda, Luis
%A Jiménez-Desantiago, Valentín
%A Montejano, Luis
%T On the isometric conjecture of Banach
%J Geometry & topology
%D 2021
%P 2621-2642
%V 25
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.2621/
%R 10.2140/gt.2021.25.2621
%F GT_2021_25_5_a8
Bor, Gil; Hernández Lamoneda, Luis; Jiménez-Desantiago, Valentín; Montejano, Luis. On the isometric conjecture of Banach. Geometry & topology, Tome 25 (2021) no. 5, pp. 2621-2642. doi : 10.2140/gt.2021.25.2621. http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.2621/

[1] J F Adams, Lectures on Lie groups, Benjamin (1969)

[2] H Auerbach, S Mazur, S Ulam, Sur une propriété caractéristique de l’ellipsoïde, Monatsh. Math. Phys. 42 (1935) 45 | DOI

[3] S Banach, Théorie des opérations linéaires, 1, PWN (1932)

[4] A L Besse, Einstein manifolds, 10, Springer (1987) | DOI

[5] M Čadek, M Crabb, G–structures on spheres, Proc. Lond. Math. Soc. 93 (2006) 791 | DOI

[6] A Dvoretzky, A theorem on convex bodies and applications to Banach spaces, Proc. Nat. Acad. Sci. U.S.A. 45 (1959) 223 | DOI

[7] A Dvoretzky, Some results on convex bodies and Banach spaces, from: "Proceedings of the international symposium on linear spaces", Jerusalem Acad. Press (1961) 123

[8] E B Dynkin, Semisimple subalgebras of semisimple Lie algebras, Mat. Sb. 30(72) (1952) 349

[9] M L Gromov, A geometrical conjecture of Banach, Izv. Akad. Nauk SSSR Ser. Mat. 31 (1967) 1105

[10] D Husemoller, Fibre bundles, 20, Springer (1994) | DOI

[11] K Itô, editor, Encyclopedic dictionary of mathematics, MIT Press (1987)

[12] S Kobayashi, K Nomizu, Foundations of differential geometry, I, Interscience (1963)

[13] P Leonard, G–structures on spheres, Trans. Amer. Math. Soc. 157 (1971) 311 | DOI

[14] P Mani, Fields of planar bodies tangent to spheres, Monatsh. Math. 74 (1970) 145 | DOI

[15] H Martini, L Montejano, D Oliveros, Bodies of constant width: an introduction to convex geometry with applications, Birkhäuser (2019) | DOI

[16] V D Milman, New proof of the theorem of A Dvoretzky on intersections of convex bodies, Funkcional. Anal. i Priložen. 5 (1971) 28

[17] L Montejano, Convex bodies with homothetic sections, Bull. Lond. Math. Soc. 23 (1991) 381 | DOI

[18] L Montejano, Two applications of topology to convex geometry, Tr. Mat. Inst. Steklova 247 (2004) 182

[19] D Montgomery, H Samelson, Transformation groups of spheres, Ann. of Math. 44 (1943) 454 | DOI

[20] A L Onishchik, Topology of transitive transformation groups, Barth (1994)

[21] A Pełciński, On some problems of Banach, Wiadom. Mat. (2) 15 (1972) 3

[22] V Soltan, Characteristic properties of ellipsoids and convex quadrics, Aequationes Math. 93 (2019) 371 | DOI

[23] N Steenrod, The topology of fibre bundles, 14, Princeton Univ. Press (1951)

[24] G W Whitehead, Elements of homotopy theory, 61, Springer (1978) | DOI

Cité par Sources :