Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Let be a Banach space all of whose subspaces of a fixed dimension are isometric, with . In 1932, S Banach asked if under this hypothesis is necessarily a Hilbert space. In 1967, M Gromov answered it positively for even . We give a positive answer for real and odd of the form , with the possible exception of . Our proof relies on a new characterization of ellipsoids in for , as the only symmetric convex bodies all of whose linear hyperplane sections are linearly equivalent affine bodies of revolution.
Bor, Gil 1 ; Hernández Lamoneda, Luis 1 ; Jiménez-Desantiago, Valentín 2 ; Montejano, Luis 2
@article{GT_2021_25_5_a8, author = {Bor, Gil and Hern\'andez Lamoneda, Luis and Jim\'enez-Desantiago, Valent{\'\i}n and Montejano, Luis}, title = {On the isometric conjecture of {Banach}}, journal = {Geometry & topology}, pages = {2621--2642}, publisher = {mathdoc}, volume = {25}, number = {5}, year = {2021}, doi = {10.2140/gt.2021.25.2621}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.2621/} }
TY - JOUR AU - Bor, Gil AU - Hernández Lamoneda, Luis AU - Jiménez-Desantiago, Valentín AU - Montejano, Luis TI - On the isometric conjecture of Banach JO - Geometry & topology PY - 2021 SP - 2621 EP - 2642 VL - 25 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.2621/ DO - 10.2140/gt.2021.25.2621 ID - GT_2021_25_5_a8 ER -
%0 Journal Article %A Bor, Gil %A Hernández Lamoneda, Luis %A Jiménez-Desantiago, Valentín %A Montejano, Luis %T On the isometric conjecture of Banach %J Geometry & topology %D 2021 %P 2621-2642 %V 25 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.2621/ %R 10.2140/gt.2021.25.2621 %F GT_2021_25_5_a8
Bor, Gil; Hernández Lamoneda, Luis; Jiménez-Desantiago, Valentín; Montejano, Luis. On the isometric conjecture of Banach. Geometry & topology, Tome 25 (2021) no. 5, pp. 2621-2642. doi : 10.2140/gt.2021.25.2621. http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.2621/
[1] Lectures on Lie groups, Benjamin (1969)
,[2] Sur une propriété caractéristique de l’ellipsoïde, Monatsh. Math. Phys. 42 (1935) 45 | DOI
, , ,[3] Théorie des opérations linéaires, 1, PWN (1932)
,[4] Einstein manifolds, 10, Springer (1987) | DOI
,[5] G–structures on spheres, Proc. Lond. Math. Soc. 93 (2006) 791 | DOI
, ,[6] A theorem on convex bodies and applications to Banach spaces, Proc. Nat. Acad. Sci. U.S.A. 45 (1959) 223 | DOI
,[7] Some results on convex bodies and Banach spaces, from: "Proceedings of the international symposium on linear spaces", Jerusalem Acad. Press (1961) 123
,[8] Semisimple subalgebras of semisimple Lie algebras, Mat. Sb. 30(72) (1952) 349
,[9] A geometrical conjecture of Banach, Izv. Akad. Nauk SSSR Ser. Mat. 31 (1967) 1105
,[10] Fibre bundles, 20, Springer (1994) | DOI
,[11] Encyclopedic dictionary of mathematics, MIT Press (1987)
, editor,[12] Foundations of differential geometry, I, Interscience (1963)
, ,[13] G–structures on spheres, Trans. Amer. Math. Soc. 157 (1971) 311 | DOI
,[14] Fields of planar bodies tangent to spheres, Monatsh. Math. 74 (1970) 145 | DOI
,[15] Bodies of constant width: an introduction to convex geometry with applications, Birkhäuser (2019) | DOI
, , ,[16] New proof of the theorem of A Dvoretzky on intersections of convex bodies, Funkcional. Anal. i Priložen. 5 (1971) 28
,[17] Convex bodies with homothetic sections, Bull. Lond. Math. Soc. 23 (1991) 381 | DOI
,[18] Two applications of topology to convex geometry, Tr. Mat. Inst. Steklova 247 (2004) 182
,[19] Transformation groups of spheres, Ann. of Math. 44 (1943) 454 | DOI
, ,[20] Topology of transitive transformation groups, Barth (1994)
,[21] On some problems of Banach, Wiadom. Mat. (2) 15 (1972) 3
,[22] Characteristic properties of ellipsoids and convex quadrics, Aequationes Math. 93 (2019) 371 | DOI
,[23] The topology of fibre bundles, 14, Princeton Univ. Press (1951)
,[24] Elements of homotopy theory, 61, Springer (1978) | DOI
,Cité par Sources :