Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
The space of “almost calibrated” –forms on a compact Kähler manifold plays an important role in the study of the deformed Hermitian Yang–Mills equation of mirror symmetry, as emphasized by recent work of Collins and Yau (2018), and is related by mirror symmetry to the space of positive Lagrangians studied by Solomon (2013, 2014). This paper initiates the study of the geometry of . We show that is an infinite-dimensional Riemannian manifold with nonpositive sectional curvature. In the hypercritical phase case we show that has a well-defined metric structure, and that its completion is a geodesic metric space, and hence has an intrinsically defined ideal boundary. Finally, we show that in the hypercritical phase case admits geodesics, improving a result of Collins and Yau (2018). Using results of Darvas and Lempert (2012) we show that this result is sharp.
Chu, Jianchun 1 ; Collins, Tristan C 2 ; Lee, Man-Chun 1
@article{GT_2021_25_5_a7, author = {Chu, Jianchun and Collins, Tristan C and Lee, Man-Chun}, title = {The space of almost calibrated (1,1){\textendash}forms on a compact {K\"ahler} manifold}, journal = {Geometry & topology}, pages = {2573--2619}, publisher = {mathdoc}, volume = {25}, number = {5}, year = {2021}, doi = {10.2140/gt.2021.25.2573}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.2573/} }
TY - JOUR AU - Chu, Jianchun AU - Collins, Tristan C AU - Lee, Man-Chun TI - The space of almost calibrated (1,1)–forms on a compact Kähler manifold JO - Geometry & topology PY - 2021 SP - 2573 EP - 2619 VL - 25 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.2573/ DO - 10.2140/gt.2021.25.2573 ID - GT_2021_25_5_a7 ER -
%0 Journal Article %A Chu, Jianchun %A Collins, Tristan C %A Lee, Man-Chun %T The space of almost calibrated (1,1)–forms on a compact Kähler manifold %J Geometry & topology %D 2021 %P 2573-2619 %V 25 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.2573/ %R 10.2140/gt.2021.25.2573 %F GT_2021_25_5_a7
Chu, Jianchun; Collins, Tristan C; Lee, Man-Chun. The space of almost calibrated (1,1)–forms on a compact Kähler manifold. Geometry & topology, Tome 25 (2021) no. 5, pp. 2573-2619. doi : 10.2140/gt.2021.25.2573. http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.2573/
[1] The complex Monge–Ampère equation in Kähler geometry, from: "Pluripotential theory" (editors F Bracci, J E Fornæss), Lecture Notes in Math. 2075, Springer (2013) 95 | DOI
,[2] Metric spaces of non-positive curvature, 319, Springer (1999) | DOI
, ,[3] The space of Kähler metrics, II, J. Differential Geom. 61 (2002) 173 | DOI
, ,[4] The space of Kähler metrics, J. Differential Geom. 56 (2000) 189 | DOI
,[5] On the C1,1 regularity of geodesics in the space of Kähler metrics, Ann. PDE 3 (2017) | DOI
, , ,[6] (1,1) forms with specified Lagrangian phase : a priori estimates and algebraic obstructions, Camb. J. Math. 8 (2020) 407 | DOI
, , ,[7] The deformed Hermitian–Yang–Mills equation in geometry and physics, from: "Geometry and physics, I" (editors J E Andersen, A Dancer, O García-Prada), Oxford Univ. Press (2018) 69 | DOI
, , ,[8] Moment maps, nonlinear PDE, and stability in mirror symmetry, preprint (2018)
, ,[9] Morse theory and geodesics in the space of Kähler metrics, Proc. Amer. Math. Soc. 142 (2014) 2775 | DOI
,[10] Geometric pluripotential theory on Kähler manifolds, from: "Advances in complex geometry" (editors Y A Rubinstein, B Shiffman), Contemp. Math. 735, Amer. Math. Soc. (2019) 1 | DOI
,[11] Weak geodesics in the space of Kähler metrics, Math. Res. Lett. 19 (2012) 1127 | DOI
, ,[12] A minimum principle for Lagrangian graphs, Comm. Anal. Geom. 27 (2019) 857 | DOI
, ,[13] The degenerate special Lagrangian equation on Riemannian manifolds, Int. Math. Res. Not. 2020 (2020) 2832 | DOI
,[14] Closed Weingarten hypersurfaces in Riemannian manifolds, J. Differential Geom. 43 (1996) 612 | DOI
,[15] Degenerate complex Monge–Ampère equations, 26, Eur. Math. Soc. (2017) | DOI
, ,[16] Doubly stochastic matrices and the diagonal of a rotation matrix, Amer. J. Math. 76 (1954) 620 | DOI
,[17] Weak geodesics for the deformed Hermitian–Yang–Mills equation, Pure Appl. Math. Q. 17 (2021) 1113 | DOI
,[18] A special Lagrangian type equation for holomorphic line bundles, Math. Ann. 369 (2017) 869 | DOI
, ,[19] Geodesics in the space of Kähler metrics, Duke Math. J. 162 (2013) 1369 | DOI
, ,[20] From special Lagrangian to Hermitian–Yang–Mills via Fourier–Mukai transform, Adv. Theor. Math. Phys. 4 (2000) 1319 | DOI
, , ,[21] Nonlinear instantons from supersymmetric p–branes, J. High Energy Phys. (2000) | DOI
, , , ,[22] Complex Monge–Ampère equations, from: "Surveys in differential geometry" (editors H D Cao, S T Yau), Surv. Differ. Geom. 17, International (2012) 327 | DOI
, , ,[23] The degenerate special Lagrangian equation, Adv. Math. 310 (2017) 889 | DOI
, ,[24] The Calabi homomorphism, Lagrangian paths and special Lagrangians, Math. Ann. 357 (2013) 1389 | DOI
,[25] Curvature of the space of positive Lagrangians, Geom. Funct. Anal. 24 (2014) 670 | DOI
,[26] Geometric aspects of the theory of fully nonlinear elliptic equations, from: "Global theory of minimal surfaces" (editor D Hoffman), Clay Math. Proc. 2, Amer. Math. Soc. (2005) 283
,[27] Moment maps, monodromy and mirror manifolds, from: "Symplectic geometry and mirror symmetry" (editors K Fukaya, Y G Oh, K Ono, G Tian), World Sci. (2001) 467 | DOI
,[28] Special Lagrangians, stable bundles and mean curvature flow, Comm. Anal. Geom. 10 (2002) 1075 | DOI
, ,Cité par Sources :