On Kodaira fibrations with invariant cohomology
Geometry & topology, Tome 25 (2021) no. 5, pp. 2385-2404.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

A Kodaira fibration is a compact, complex surface admitting a holomorphic submersion onto a complex curve such that the fibers have nonconstant moduli. We consider Kodaira fibrations X with nontrivial invariant –cohomology in degree 1, proving that if the dimension of the holomorphic invariants is 1 or 2, then X admits a branch covering over a product of curves inducing an isomorphism on rational cohomology in degree 1. We also study the class of Kodaira fibrations possessing a holomorphic section, and demonstrate that having a section imposes no restriction on possible monodromies.

DOI : 10.2140/gt.2021.25.2385
Classification : 14D06, 14H15, 32Q15, 14F40, 14J29, 20F34, 57M50
Keywords: Kodaira fibration, surface bundle, Albanese variety, monodromy

Bregman, Corey 1

1 Department of Mathematics and Statistics, University of Southern Maine, Portland, ME, United States
@article{GT_2021_25_5_a4,
     author = {Bregman, Corey},
     title = {On {Kodaira} fibrations with invariant cohomology},
     journal = {Geometry & topology},
     pages = {2385--2404},
     publisher = {mathdoc},
     volume = {25},
     number = {5},
     year = {2021},
     doi = {10.2140/gt.2021.25.2385},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.2385/}
}
TY  - JOUR
AU  - Bregman, Corey
TI  - On Kodaira fibrations with invariant cohomology
JO  - Geometry & topology
PY  - 2021
SP  - 2385
EP  - 2404
VL  - 25
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.2385/
DO  - 10.2140/gt.2021.25.2385
ID  - GT_2021_25_5_a4
ER  - 
%0 Journal Article
%A Bregman, Corey
%T On Kodaira fibrations with invariant cohomology
%J Geometry & topology
%D 2021
%P 2385-2404
%V 25
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.2385/
%R 10.2140/gt.2021.25.2385
%F GT_2021_25_5_a4
Bregman, Corey. On Kodaira fibrations with invariant cohomology. Geometry & topology, Tome 25 (2021) no. 5, pp. 2385-2404. doi : 10.2140/gt.2021.25.2385. http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.2385/

[1] J Amorós, M Burger, K Corlette, D Kotschick, D Toledo, Fundamental groups of compact Kähler manifolds, 44, Amer. Math. Soc. (1996) | DOI

[2] D Arapura, Toward the structure of fibered fundamental groups of projective varieties, J. Éc. Polytech. Math. 4 (2017) 595 | DOI

[3] M F Atiyah, The signature of fibre-bundles, from: "Global analysis" (editors D C Spencer, S Iyanaga), Univ. Tokyo Press (1969) 73

[4] A Beauville, Complex algebraic surfaces, 68, Cambridge Univ. Press (1983)

[5] M R Bridson, C Llosa Isenrich, Kodaira fibrations, Kähler groups, and finiteness properties, Trans. Amer. Math. Soc. 372 (2019) 5869 | DOI

[6] E Brieskorn, Rationale Singularitäten komplexer Flächen, Invent. Math. 4 (1968) 336 | DOI

[7] J Bryan, R Donagi, Surface bundles over surfaces of small genus, Geom. Topol. 6 (2002) 59 | DOI

[8] F Catanese, Moduli and classification of irregular Kaehler manifolds (and algebraic varieties) with Albanese general type fibrations, Invent. Math. 104 (1991) 263 | DOI

[9] F Catanese, S Rollenske, Double Kodaira fibrations, J. Reine Angew. Math. 628 (2009) 205 | DOI

[10] L Flapan, Monodromy of Kodaira fibrations of genus 3, preprint (2017)

[11] G González Díez, W J Harvey, On complete curves in moduli space, I, Math. Proc. Cambridge Philos. Soc. 110 (1991) 461 | DOI

[12] G González Díez, W J Harvey, On complete curves in moduli space, II, Math. Proc. Cambridge Philos. Soc. 110 (1991) 467 | DOI

[13] P Griffiths, J Harris, Principles of algebraic geometry, Wiley (1978)

[14] J A Hillman, Complex surfaces which are fibre bundles, Topol. Appl. 100 (2000) 187 | DOI

[15] F Hirzebruch, The signature of ramified coverings, from: "Global analysis" (editors D C Spencer, S Iyanaga), Univ. Tokyo Press (1969) 253

[16] M Kapovich, On normal subgroups in the fundamental groups of complex surfaces, preprint (1998)

[17] A Kas, On deformations of a certain type of irregular algebraic surface, Amer. J. Math. 90 (1968) 789 | DOI

[18] K Kodaira, A certain type of irregular algebraic surfaces, J. Anal. Math. 19 (1967) 207 | DOI

[19] D Kotschick, On regularly fibered complex surfaces, from: "Proceedings of the Kirbyfest" (editors J Hass, M Scharlemann), Geom. Topol. Monogr. 2, Geom. Topol. Publ. (1999) 291 | DOI

[20] J A Lee, M Lönne, S Rollenske, Double Kodaira fibrations with small signature, Int. J. Math. 31 (2020) | DOI

[21] S Morita, Characteristic classes of surface bundles, Invent. Math. 90 (1987) 551 | DOI

[22] D Mumford, The topology of normal singularities of an algebraic surface and a criterion for simplicity, Inst. Hautes Études Sci. Publ. Math. 9 (1961) 5 | DOI

[23] D Mumford, Abelian varieties, 5, Oxford Univ. Press (1970)

[24] G Riera, Semi-direct products of Fuchsian groups and uniformization, Duke Math. J. 44 (1977) 291 | DOI

[25] Y T Siu, Strong rigidity for Kähler manifolds and the construction of bounded holomorphic functions, from: "Discrete groups in geometry and analysis" (editor R Howe), Progr. Math. 67, Birkhäuser (1987) 124 | DOI

[26] J Stallings, Homology and central series of groups, J. Algebra 2 (1965) 170 | DOI

[27] C Voisin, Hodge theory and complex algebraic geometry, II, 77, Cambridge Univ. Press (2003) | DOI

[28] C Zaal, Explicit complete curves in the moduli space of curves of genus three, Geom. Dedicata 56 (1995) 185 | DOI

Cité par Sources :