Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
A Kodaira fibration is a compact, complex surface admitting a holomorphic submersion onto a complex curve such that the fibers have nonconstant moduli. We consider Kodaira fibrations with nontrivial invariant –cohomology in degree , proving that if the dimension of the holomorphic invariants is or , then admits a branch covering over a product of curves inducing an isomorphism on rational cohomology in degree . We also study the class of Kodaira fibrations possessing a holomorphic section, and demonstrate that having a section imposes no restriction on possible monodromies.
Bregman, Corey 1
@article{GT_2021_25_5_a4, author = {Bregman, Corey}, title = {On {Kodaira} fibrations with invariant cohomology}, journal = {Geometry & topology}, pages = {2385--2404}, publisher = {mathdoc}, volume = {25}, number = {5}, year = {2021}, doi = {10.2140/gt.2021.25.2385}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.2385/} }
Bregman, Corey. On Kodaira fibrations with invariant cohomology. Geometry & topology, Tome 25 (2021) no. 5, pp. 2385-2404. doi : 10.2140/gt.2021.25.2385. http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.2385/
[1] Fundamental groups of compact Kähler manifolds, 44, Amer. Math. Soc. (1996) | DOI
, , , , ,[2] Toward the structure of fibered fundamental groups of projective varieties, J. Éc. Polytech. Math. 4 (2017) 595 | DOI
,[3] The signature of fibre-bundles, from: "Global analysis" (editors D C Spencer, S Iyanaga), Univ. Tokyo Press (1969) 73
,[4] Complex algebraic surfaces, 68, Cambridge Univ. Press (1983)
,[5] Kodaira fibrations, Kähler groups, and finiteness properties, Trans. Amer. Math. Soc. 372 (2019) 5869 | DOI
, ,[6] Rationale Singularitäten komplexer Flächen, Invent. Math. 4 (1968) 336 | DOI
,[7] Surface bundles over surfaces of small genus, Geom. Topol. 6 (2002) 59 | DOI
, ,[8] Moduli and classification of irregular Kaehler manifolds (and algebraic varieties) with Albanese general type fibrations, Invent. Math. 104 (1991) 263 | DOI
,[9] Double Kodaira fibrations, J. Reine Angew. Math. 628 (2009) 205 | DOI
, ,[10] Monodromy of Kodaira fibrations of genus 3, preprint (2017)
,[11] On complete curves in moduli space, I, Math. Proc. Cambridge Philos. Soc. 110 (1991) 461 | DOI
, ,[12] On complete curves in moduli space, II, Math. Proc. Cambridge Philos. Soc. 110 (1991) 467 | DOI
, ,[13] Principles of algebraic geometry, Wiley (1978)
, ,[14] Complex surfaces which are fibre bundles, Topol. Appl. 100 (2000) 187 | DOI
,[15] The signature of ramified coverings, from: "Global analysis" (editors D C Spencer, S Iyanaga), Univ. Tokyo Press (1969) 253
,[16] On normal subgroups in the fundamental groups of complex surfaces, preprint (1998)
,[17] On deformations of a certain type of irregular algebraic surface, Amer. J. Math. 90 (1968) 789 | DOI
,[18] A certain type of irregular algebraic surfaces, J. Anal. Math. 19 (1967) 207 | DOI
,[19] On regularly fibered complex surfaces, from: "Proceedings of the Kirbyfest" (editors J Hass, M Scharlemann), Geom. Topol. Monogr. 2, Geom. Topol. Publ. (1999) 291 | DOI
,[20] Double Kodaira fibrations with small signature, Int. J. Math. 31 (2020) | DOI
, , ,[21] Characteristic classes of surface bundles, Invent. Math. 90 (1987) 551 | DOI
,[22] The topology of normal singularities of an algebraic surface and a criterion for simplicity, Inst. Hautes Études Sci. Publ. Math. 9 (1961) 5 | DOI
,[23] Abelian varieties, 5, Oxford Univ. Press (1970)
,[24] Semi-direct products of Fuchsian groups and uniformization, Duke Math. J. 44 (1977) 291 | DOI
,[25] Strong rigidity for Kähler manifolds and the construction of bounded holomorphic functions, from: "Discrete groups in geometry and analysis" (editor R Howe), Progr. Math. 67, Birkhäuser (1987) 124 | DOI
,[26] Homology and central series of groups, J. Algebra 2 (1965) 170 | DOI
,[27] Hodge theory and complex algebraic geometry, II, 77, Cambridge Univ. Press (2003) | DOI
,[28] Explicit complete curves in the moduli space of curves of genus three, Geom. Dedicata 56 (1995) 185 | DOI
,Cité par Sources :